OpenCV for Unity  2.6.0
Enox Software / Please refer to OpenCV official document ( http://docs.opencv.org/4.9.0/index.html ) for the details of the argument of the method.
Classes | Static Public Member Functions | Public Attributes | Static Public Attributes | List of all members
OpenCVForUnity.CoreModule.Core Class Reference

Classes

class  MinMaxLocResult
 

Static Public Member Functions

static float cubeRoot (float val)
 Computes the cube root of an argument. More...
 
static float fastAtan2 (float y, float x)
 Calculates the angle of a 2D vector in degrees. More...
 
static bool useIPP ()
 
static void setUseIPP (bool flag)
 
static string getIppVersion ()
 
static bool useIPP_NotExact ()
 
static void setUseIPP_NotExact (bool flag)
 
static int borderInterpolate (int p, int len, int borderType)
 Computes the source location of an extrapolated pixel. More...
 
static void copyMakeBorder (Mat src, Mat dst, int top, int bottom, int left, int right, int borderType, Scalar value)
 Forms a border around an image. More...
 
static void copyMakeBorder (Mat src, Mat dst, int top, int bottom, int left, int right, int borderType)
 Forms a border around an image. More...
 
static void add (Mat src1, Mat src2, Mat dst, Mat mask, int dtype)
 Calculates the per-element sum of two arrays or an array and a scalar. More...
 
static void add (Mat src1, Mat src2, Mat dst, Mat mask)
 Calculates the per-element sum of two arrays or an array and a scalar. More...
 
static void add (Mat src1, Mat src2, Mat dst)
 Calculates the per-element sum of two arrays or an array and a scalar. More...
 
static void subtract (Mat src1, Mat src2, Mat dst, Mat mask, int dtype)
 Calculates the per-element difference between two arrays or array and a scalar. More...
 
static void subtract (Mat src1, Mat src2, Mat dst, Mat mask)
 Calculates the per-element difference between two arrays or array and a scalar. More...
 
static void subtract (Mat src1, Mat src2, Mat dst)
 Calculates the per-element difference between two arrays or array and a scalar. More...
 
static void multiply (Mat src1, Mat src2, Mat dst, double scale, int dtype)
 Calculates the per-element scaled product of two arrays. More...
 
static void multiply (Mat src1, Mat src2, Mat dst, double scale)
 Calculates the per-element scaled product of two arrays. More...
 
static void multiply (Mat src1, Mat src2, Mat dst)
 Calculates the per-element scaled product of two arrays. More...
 
static void divide (Mat src1, Mat src2, Mat dst, double scale, int dtype)
 Performs per-element division of two arrays or a scalar by an array. More...
 
static void divide (Mat src1, Mat src2, Mat dst, double scale)
 Performs per-element division of two arrays or a scalar by an array. More...
 
static void divide (Mat src1, Mat src2, Mat dst)
 Performs per-element division of two arrays or a scalar by an array. More...
 
static void divide (double scale, Mat src2, Mat dst, int dtype)
 
static void divide (double scale, Mat src2, Mat dst)
 
static void scaleAdd (Mat src1, double alpha, Mat src2, Mat dst)
 Calculates the sum of a scaled array and another array. More...
 
static void addWeighted (Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst, int dtype)
 Calculates the weighted sum of two arrays. More...
 
static void addWeighted (Mat src1, double alpha, Mat src2, double beta, double gamma, Mat dst)
 Calculates the weighted sum of two arrays. More...
 
static void convertScaleAbs (Mat src, Mat dst, double alpha, double beta)
 Scales, calculates absolute values, and converts the result to 8-bit. More...
 
static void convertScaleAbs (Mat src, Mat dst, double alpha)
 Scales, calculates absolute values, and converts the result to 8-bit. More...
 
static void convertScaleAbs (Mat src, Mat dst)
 Scales, calculates absolute values, and converts the result to 8-bit. More...
 
static void convertFp16 (Mat src, Mat dst)
 Converts an array to half precision floating number. More...
 
static void LUT (Mat src, Mat lut, Mat dst)
 Performs a look-up table transform of an array. More...
 
static Scalar sumElems (Mat src)
 Calculates the sum of array elements. More...
 
static bool hasNonZero (Mat src)
 Checks for the presence of at least one non-zero array element. More...
 
static int countNonZero (Mat src)
 Counts non-zero array elements. More...
 
static void findNonZero (Mat src, Mat idx)
 Returns the list of locations of non-zero pixels. More...
 
static Scalar mean (Mat src, Mat mask)
 Calculates an average (mean) of array elements. More...
 
static Scalar mean (Mat src)
 Calculates an average (mean) of array elements. More...
 
static void meanStdDev (Mat src, MatOfDouble mean, MatOfDouble stddev, Mat mask)
 
static void meanStdDev (Mat src, MatOfDouble mean, MatOfDouble stddev)
 
static double norm (Mat src1, int normType, Mat mask)
 Calculates the absolute norm of an array. More...
 
static double norm (Mat src1, int normType)
 Calculates the absolute norm of an array. More...
 
static double norm (Mat src1)
 Calculates the absolute norm of an array. More...
 
static double norm (Mat src1, Mat src2, int normType, Mat mask)
 Calculates an absolute difference norm or a relative difference norm. More...
 
static double norm (Mat src1, Mat src2, int normType)
 Calculates an absolute difference norm or a relative difference norm. More...
 
static double norm (Mat src1, Mat src2)
 Calculates an absolute difference norm or a relative difference norm. More...
 
static double PSNR (Mat src1, Mat src2, double R)
 Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric. More...
 
static double PSNR (Mat src1, Mat src2)
 Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric. More...
 
static void batchDistance (Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask, int update, bool crosscheck)
 naive nearest neighbor finder More...
 
static void batchDistance (Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask, int update)
 naive nearest neighbor finder More...
 
static void batchDistance (Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K, Mat mask)
 naive nearest neighbor finder More...
 
static void batchDistance (Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType, int K)
 naive nearest neighbor finder More...
 
static void batchDistance (Mat src1, Mat src2, Mat dist, int dtype, Mat nidx, int normType)
 naive nearest neighbor finder More...
 
static void batchDistance (Mat src1, Mat src2, Mat dist, int dtype, Mat nidx)
 naive nearest neighbor finder More...
 
static void normalize (Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype, Mat mask)
 Normalizes the norm or value range of an array. More...
 
static void normalize (Mat src, Mat dst, double alpha, double beta, int norm_type, int dtype)
 Normalizes the norm or value range of an array. More...
 
static void normalize (Mat src, Mat dst, double alpha, double beta, int norm_type)
 Normalizes the norm or value range of an array. More...
 
static void normalize (Mat src, Mat dst, double alpha, double beta)
 Normalizes the norm or value range of an array. More...
 
static void normalize (Mat src, Mat dst, double alpha)
 Normalizes the norm or value range of an array. More...
 
static void normalize (Mat src, Mat dst)
 Normalizes the norm or value range of an array. More...
 
static void reduceArgMin (Mat src, Mat dst, int axis, bool lastIndex)
 Finds indices of min elements along provided axis. More...
 
static void reduceArgMin (Mat src, Mat dst, int axis)
 Finds indices of min elements along provided axis. More...
 
static void reduceArgMax (Mat src, Mat dst, int axis, bool lastIndex)
 Finds indices of max elements along provided axis. More...
 
static void reduceArgMax (Mat src, Mat dst, int axis)
 Finds indices of max elements along provided axis. More...
 
static void reduce (Mat src, Mat dst, int dim, int rtype, int dtype)
 Reduces a matrix to a vector. More...
 
static void reduce (Mat src, Mat dst, int dim, int rtype)
 Reduces a matrix to a vector. More...
 
static void merge (List< Mat > mv, Mat dst)
 
static void split (Mat m, List< Mat > mv)
 
static void mixChannels (List< Mat > src, List< Mat > dst, MatOfInt fromTo)
 
static void extractChannel (Mat src, Mat dst, int coi)
 Extracts a single channel from src (coi is 0-based index) More...
 
static void insertChannel (Mat src, Mat dst, int coi)
 Inserts a single channel to dst (coi is 0-based index) More...
 
static void flip (Mat src, Mat dst, int flipCode)
 Flips a 2D array around vertical, horizontal, or both axes. More...
 
static void flipND (Mat src, Mat dst, int axis)
 Flips a n-dimensional at given axis. More...
 
static void broadcast (Mat src, Mat shape, Mat dst)
 Broadcast the given Mat to the given shape. More...
 
static void rotate (Mat src, Mat dst, int rotateCode)
 Rotates a 2D array in multiples of 90 degrees. The function cv::rotate rotates the array in one of three different ways: Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE). Rotate by 180 degrees clockwise (rotateCode = ROTATE_180). Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE). More...
 
static void repeat (Mat src, int ny, int nx, Mat dst)
 Fills the output array with repeated copies of the input array. More...
 
static void hconcat (List< Mat > src, Mat dst)
 
static void vconcat (List< Mat > src, Mat dst)
 
static void bitwise_and (Mat src1, Mat src2, Mat dst, Mat mask)
 computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar. More...
 
static void bitwise_and (Mat src1, Mat src2, Mat dst)
 computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar. More...
 
static void bitwise_or (Mat src1, Mat src2, Mat dst, Mat mask)
 Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar. More...
 
static void bitwise_or (Mat src1, Mat src2, Mat dst)
 Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar. More...
 
static void bitwise_xor (Mat src1, Mat src2, Mat dst, Mat mask)
 Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar. More...
 
static void bitwise_xor (Mat src1, Mat src2, Mat dst)
 Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar. More...
 
static void bitwise_not (Mat src, Mat dst, Mat mask)
 Inverts every bit of an array. More...
 
static void bitwise_not (Mat src, Mat dst)
 Inverts every bit of an array. More...
 
static void absdiff (Mat src1, Mat src2, Mat dst)
 Calculates the per-element absolute difference between two arrays or between an array and a scalar. More...
 
static void copyTo (Mat src, Mat dst, Mat mask)
 This is an overloaded member function, provided for convenience (python) Copies the matrix to another one. When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data. More...
 
static void inRange (Mat src, Scalar lowerb, Scalar upperb, Mat dst)
 Checks if array elements lie between the elements of two other arrays. More...
 
static void compare (Mat src1, Mat src2, Mat dst, int cmpop)
 Performs the per-element comparison of two arrays or an array and scalar value. More...
 
static void min (Mat src1, Mat src2, Mat dst)
 Calculates per-element minimum of two arrays or an array and a scalar. More...
 
static void max (Mat src1, Mat src2, Mat dst)
 Calculates per-element maximum of two arrays or an array and a scalar. More...
 
static void sqrt (Mat src, Mat dst)
 Calculates a square root of array elements. More...
 
static void pow (Mat src, double power, Mat dst)
 Raises every array element to a power. More...
 
static void exp (Mat src, Mat dst)
 Calculates the exponent of every array element. More...
 
static void log (Mat src, Mat dst)
 Calculates the natural logarithm of every array element. More...
 
static void polarToCart (Mat magnitude, Mat angle, Mat x, Mat y, bool angleInDegrees)
 Calculates x and y coordinates of 2D vectors from their magnitude and angle. More...
 
static void polarToCart (Mat magnitude, Mat angle, Mat x, Mat y)
 Calculates x and y coordinates of 2D vectors from their magnitude and angle. More...
 
static void cartToPolar (Mat x, Mat y, Mat magnitude, Mat angle, bool angleInDegrees)
 Calculates the magnitude and angle of 2D vectors. More...
 
static void cartToPolar (Mat x, Mat y, Mat magnitude, Mat angle)
 Calculates the magnitude and angle of 2D vectors. More...
 
static void phase (Mat x, Mat y, Mat angle, bool angleInDegrees)
 Calculates the rotation angle of 2D vectors. More...
 
static void phase (Mat x, Mat y, Mat angle)
 Calculates the rotation angle of 2D vectors. More...
 
static void magnitude (Mat x, Mat y, Mat magnitude)
 Calculates the magnitude of 2D vectors. More...
 
static bool checkRange (Mat a, bool quiet, double minVal, double maxVal)
 Checks every element of an input array for invalid values. More...
 
static bool checkRange (Mat a, bool quiet, double minVal)
 Checks every element of an input array for invalid values. More...
 
static bool checkRange (Mat a, bool quiet)
 Checks every element of an input array for invalid values. More...
 
static bool checkRange (Mat a)
 Checks every element of an input array for invalid values. More...
 
static void patchNaNs (Mat a, double val)
 Replaces NaNs by given number. More...
 
static void patchNaNs (Mat a)
 Replaces NaNs by given number. More...
 
static void gemm (Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst, int flags)
 Performs generalized matrix multiplication. More...
 
static void gemm (Mat src1, Mat src2, double alpha, Mat src3, double beta, Mat dst)
 Performs generalized matrix multiplication. More...
 
static void mulTransposed (Mat src, Mat dst, bool aTa, Mat delta, double scale, int dtype)
 Calculates the product of a matrix and its transposition. More...
 
static void mulTransposed (Mat src, Mat dst, bool aTa, Mat delta, double scale)
 Calculates the product of a matrix and its transposition. More...
 
static void mulTransposed (Mat src, Mat dst, bool aTa, Mat delta)
 Calculates the product of a matrix and its transposition. More...
 
static void mulTransposed (Mat src, Mat dst, bool aTa)
 Calculates the product of a matrix and its transposition. More...
 
static void transpose (Mat src, Mat dst)
 Transposes a matrix. More...
 
static void transposeND (Mat src, MatOfInt order, Mat dst)
 Transpose for n-dimensional matrices. More...
 
static void transform (Mat src, Mat dst, Mat m)
 Performs the matrix transformation of every array element. More...
 
static void perspectiveTransform (Mat src, Mat dst, Mat m)
 Performs the perspective matrix transformation of vectors. More...
 
static void completeSymm (Mat m, bool lowerToUpper)
 Copies the lower or the upper half of a square matrix to its another half. More...
 
static void completeSymm (Mat m)
 Copies the lower or the upper half of a square matrix to its another half. More...
 
static void setIdentity (Mat mtx, Scalar s)
 Initializes a scaled identity matrix. More...
 
static void setIdentity (Mat mtx)
 Initializes a scaled identity matrix. More...
 
static double determinant (Mat mtx)
 Returns the determinant of a square floating-point matrix. More...
 
static Scalar trace (Mat mtx)
 Returns the trace of a matrix. More...
 
static double invert (Mat src, Mat dst, int flags)
 Finds the inverse or pseudo-inverse of a matrix. More...
 
static double invert (Mat src, Mat dst)
 Finds the inverse or pseudo-inverse of a matrix. More...
 
static bool solve (Mat src1, Mat src2, Mat dst, int flags)
 Solves one or more linear systems or least-squares problems. More...
 
static bool solve (Mat src1, Mat src2, Mat dst)
 Solves one or more linear systems or least-squares problems. More...
 
static void sort (Mat src, Mat dst, int flags)
 Sorts each row or each column of a matrix. More...
 
static void sortIdx (Mat src, Mat dst, int flags)
 Sorts each row or each column of a matrix. More...
 
static int solveCubic (Mat coeffs, Mat roots)
 Finds the real roots of a cubic equation. More...
 
static double solvePoly (Mat coeffs, Mat roots, int maxIters)
 Finds the real or complex roots of a polynomial equation. More...
 
static double solvePoly (Mat coeffs, Mat roots)
 Finds the real or complex roots of a polynomial equation. More...
 
static bool eigen (Mat src, Mat eigenvalues, Mat eigenvectors)
 Calculates eigenvalues and eigenvectors of a symmetric matrix. More...
 
static bool eigen (Mat src, Mat eigenvalues)
 Calculates eigenvalues and eigenvectors of a symmetric matrix. More...
 
static void eigenNonSymmetric (Mat src, Mat eigenvalues, Mat eigenvectors)
 Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only). More...
 
static void calcCovarMatrix (Mat samples, Mat covar, Mat mean, int flags, int ctype)
 
static void calcCovarMatrix (Mat samples, Mat covar, Mat mean, int flags)
 
static void PCACompute (Mat data, Mat mean, Mat eigenvectors, int maxComponents)
 
static void PCACompute (Mat data, Mat mean, Mat eigenvectors)
 
static void PCACompute2 (Mat data, Mat mean, Mat eigenvectors, Mat eigenvalues, int maxComponents)
 
static void PCACompute2 (Mat data, Mat mean, Mat eigenvectors, Mat eigenvalues)
 
static void PCACompute (Mat data, Mat mean, Mat eigenvectors, double retainedVariance)
 
static void PCACompute2 (Mat data, Mat mean, Mat eigenvectors, Mat eigenvalues, double retainedVariance)
 
static void PCAProject (Mat data, Mat mean, Mat eigenvectors, Mat result)
 
static void PCABackProject (Mat data, Mat mean, Mat eigenvectors, Mat result)
 
static void SVDecomp (Mat src, Mat w, Mat u, Mat vt, int flags)
 
static void SVDecomp (Mat src, Mat w, Mat u, Mat vt)
 
static void SVBackSubst (Mat w, Mat u, Mat vt, Mat rhs, Mat dst)
 
static double Mahalanobis (Mat v1, Mat v2, Mat icovar)
 Calculates the Mahalanobis distance between two vectors. More...
 
static void dft (Mat src, Mat dst, int flags, int nonzeroRows)
 Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. More...
 
static void dft (Mat src, Mat dst, int flags)
 Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. More...
 
static void dft (Mat src, Mat dst)
 Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. More...
 
static void idft (Mat src, Mat dst, int flags, int nonzeroRows)
 Calculates the inverse Discrete Fourier Transform of a 1D or 2D array. More...
 
static void idft (Mat src, Mat dst, int flags)
 Calculates the inverse Discrete Fourier Transform of a 1D or 2D array. More...
 
static void idft (Mat src, Mat dst)
 Calculates the inverse Discrete Fourier Transform of a 1D or 2D array. More...
 
static void dct (Mat src, Mat dst, int flags)
 Performs a forward or inverse discrete Cosine transform of 1D or 2D array. More...
 
static void dct (Mat src, Mat dst)
 Performs a forward or inverse discrete Cosine transform of 1D or 2D array. More...
 
static void idct (Mat src, Mat dst, int flags)
 Calculates the inverse Discrete Cosine Transform of a 1D or 2D array. More...
 
static void idct (Mat src, Mat dst)
 Calculates the inverse Discrete Cosine Transform of a 1D or 2D array. More...
 
static void mulSpectrums (Mat a, Mat b, Mat c, int flags, bool conjB)
 Performs the per-element multiplication of two Fourier spectrums. More...
 
static void mulSpectrums (Mat a, Mat b, Mat c, int flags)
 Performs the per-element multiplication of two Fourier spectrums. More...
 
static int getOptimalDFTSize (int vecsize)
 Returns the optimal DFT size for a given vector size. More...
 
static void setRNGSeed (int seed)
 Sets state of default random number generator. More...
 
static void randu (Mat dst, double low, double high)
 Generates a single uniformly-distributed random number or an array of random numbers. More...
 
static void randn (Mat dst, double mean, double stddev)
 Fills the array with normally distributed random numbers. More...
 
static void randShuffle (Mat dst, double iterFactor)
 Shuffles the array elements randomly. More...
 
static void randShuffle (Mat dst)
 Shuffles the array elements randomly. More...
 
static double kmeans (Mat data, int K, Mat bestLabels, TermCriteria criteria, int attempts, int flags, Mat centers)
 Finds centers of clusters and groups input samples around the clusters. More...
 
static double kmeans (Mat data, int K, Mat bestLabels, TermCriteria criteria, int attempts, int flags)
 Finds centers of clusters and groups input samples around the clusters. More...
 
static void setNumThreads (int nthreads)
 OpenCV will try to set the number of threads for subsequent parallel regions. More...
 
static int getNumThreads ()
 Returns the number of threads used by OpenCV for parallel regions. More...
 
static int getThreadNum ()
 Returns the index of the currently executed thread within the current parallel region. Always returns 0 if called outside of parallel region. More...
 
static string getBuildInformation ()
 Returns full configuration time cmake output. More...
 
static string getVersionString ()
 Returns library version string. More...
 
static int getVersionMajor ()
 Returns major library version. More...
 
static int getVersionMinor ()
 Returns minor library version. More...
 
static int getVersionRevision ()
 Returns revision field of the library version. More...
 
static long getTickCount ()
 Returns the number of ticks. More...
 
static double getTickFrequency ()
 Returns the number of ticks per second. More...
 
static long getCPUTickCount ()
 Returns the number of CPU ticks. More...
 
static bool checkHardwareSupport (int feature)
 Returns true if the specified feature is supported by the host hardware. More...
 
static string getHardwareFeatureName (int feature)
 Returns feature name by ID. More...
 
static string getCPUFeaturesLine ()
 Returns list of CPU features enabled during compilation. More...
 
static int getNumberOfCPUs ()
 Returns the number of logical CPUs available for the process. More...
 
static void setUseOptimized (bool onoff)
 Enables or disables the optimized code. More...
 
static bool useOptimized ()
 Returns the status of optimized code usage. More...
 
static string findFile (string relative_path, bool required, bool silentMode)
 Try to find requested data file. More...
 
static string findFile (string relative_path, bool required)
 Try to find requested data file. More...
 
static string findFile (string relative_path)
 Try to find requested data file. More...
 
static string findFileOrKeep (string relative_path, bool silentMode)
 
static string findFileOrKeep (string relative_path)
 
static void addSamplesDataSearchPath (string path)
 Override search data path by adding new search location. More...
 
static void addSamplesDataSearchSubDirectory (string subdir)
 Append samples search data sub directory. More...
 
static void setErrorVerbosity (bool verbose)
 
static void add (Mat src1, Scalar src2, Mat dst, Mat mask, int dtype)
 
static void add (Mat src1, Scalar src2, Mat dst, Mat mask)
 
static void add (Mat src1, Scalar src2, Mat dst)
 
static void subtract (Mat src1, Scalar src2, Mat dst, Mat mask, int dtype)
 
static void subtract (Mat src1, Scalar src2, Mat dst, Mat mask)
 
static void subtract (Mat src1, Scalar src2, Mat dst)
 
static void multiply (Mat src1, Scalar src2, Mat dst, double scale, int dtype)
 
static void multiply (Mat src1, Scalar src2, Mat dst, double scale)
 
static void multiply (Mat src1, Scalar src2, Mat dst)
 
static void divide (Mat src1, Scalar src2, Mat dst, double scale, int dtype)
 
static void divide (Mat src1, Scalar src2, Mat dst, double scale)
 
static void divide (Mat src1, Scalar src2, Mat dst)
 
static void absdiff (Mat src1, Scalar src2, Mat dst)
 
static void compare (Mat src1, Scalar src2, Mat dst, int cmpop)
 
static void min (Mat src1, Scalar src2, Mat dst)
 
static void max (Mat src1, Scalar src2, Mat dst)
 
static MinMaxLocResult minMaxLoc (Mat src, Mat mask)
 
static MinMaxLocResult minMaxLoc (Mat src)
 

Public Attributes

const int SVD_MODIFY_A = 1
 
const int SVD_NO_UV = 2
 
const int SVD_FULL_UV = 4
 
const int FILLED = -1
 
const int REDUCE_SUM = 0
 
const int REDUCE_AVG = 1
 
const int REDUCE_MAX = 2
 
const int REDUCE_MIN = 3
 
const int RNG_UNIFORM = 0
 
const int RNG_NORMAL = 1
 
const int BORDER_CONSTANT = 0
 
const int BORDER_REPLICATE = 1
 
const int BORDER_REFLECT = 2
 
const int BORDER_WRAP = 3
 
const int BORDER_REFLECT_101 = 4
 
const int BORDER_TRANSPARENT = 5
 
const int BORDER_REFLECT101 = BORDER_REFLECT_101
 
const int BORDER_DEFAULT = BORDER_REFLECT_101
 
const int BORDER_ISOLATED = 16
 
const int CMP_EQ = 0
 
const int CMP_GT = 1
 
const int CMP_GE = 2
 
const int CMP_LT = 3
 
const int CMP_LE = 4
 
const int CMP_NE = 5
 
const int COVAR_SCRAMBLED = 0
 
const int COVAR_NORMAL = 1
 
const int COVAR_USE_AVG = 2
 
const int COVAR_SCALE = 4
 
const int COVAR_ROWS = 8
 
const int COVAR_COLS = 16
 
const int DECOMP_LU = 0
 
const int DECOMP_SVD = 1
 
const int DECOMP_EIG = 2
 
const int DECOMP_CHOLESKY = 3
 
const int DECOMP_QR = 4
 
const int DECOMP_NORMAL = 16
 
const int DFT_INVERSE = 1
 
const int DFT_SCALE = 2
 
const int DFT_ROWS = 4
 
const int DFT_COMPLEX_OUTPUT = 16
 
const int DFT_REAL_OUTPUT = 32
 
const int DFT_COMPLEX_INPUT = 64
 
const int DCT_INVERSE = DFT_INVERSE
 
const int DCT_ROWS = DFT_ROWS
 
const int StsOk = 0
 
const int StsBackTrace = -1
 
const int StsError = -2
 
const int StsInternal = -3
 
const int StsNoMem = -4
 
const int StsBadArg = -5
 
const int StsBadFunc = -6
 
const int StsNoConv = -7
 
const int StsAutoTrace = -8
 
const int HeaderIsNull = -9
 
const int BadImageSize = -10
 
const int BadOffset = -11
 
const int BadDataPtr = -12
 
const int BadStep = -13
 
const int BadModelOrChSeq = -14
 
const int BadNumChannels = -15
 
const int BadNumChannel1U = -16
 
const int BadDepth = -17
 
const int BadAlphaChannel = -18
 
const int BadOrder = -19
 
const int BadOrigin = -20
 
const int BadAlign = -21
 
const int BadCallBack = -22
 
const int BadTileSize = -23
 
const int BadCOI = -24
 
const int BadROISize = -25
 
const int MaskIsTiled = -26
 
const int StsNullPtr = -27
 
const int StsVecLengthErr = -28
 
const int StsFilterStructContentErr = -29
 
const int StsKernelStructContentErr = -30
 
const int StsFilterOffsetErr = -31
 
const int StsBadSize = -201
 
const int StsDivByZero = -202
 
const int StsInplaceNotSupported = -203
 
const int StsObjectNotFound = -204
 
const int StsUnmatchedFormats = -205
 
const int StsBadFlag = -206
 
const int StsBadPoint = -207
 
const int StsBadMask = -208
 
const int StsUnmatchedSizes = -209
 
const int StsUnsupportedFormat = -210
 
const int StsOutOfRange = -211
 
const int StsParseError = -212
 
const int StsNotImplemented = -213
 
const int StsBadMemBlock = -214
 
const int StsAssert = -215
 
const int GpuNotSupported = -216
 
const int GpuApiCallError = -217
 
const int OpenGlNotSupported = -218
 
const int OpenGlApiCallError = -219
 
const int OpenCLApiCallError = -220
 
const int OpenCLDoubleNotSupported = -221
 
const int OpenCLInitError = -222
 
const int OpenCLNoAMDBlasFft = -223
 
const int Formatter_FMT_DEFAULT = 0
 
const int Formatter_FMT_MATLAB = 1
 
const int Formatter_FMT_CSV = 2
 
const int Formatter_FMT_PYTHON = 3
 
const int Formatter_FMT_NUMPY = 4
 
const int Formatter_FMT_C = 5
 
const int GEMM_1_T = 1
 
const int GEMM_2_T = 2
 
const int GEMM_3_T = 4
 
const int KMEANS_RANDOM_CENTERS = 0
 
const int KMEANS_PP_CENTERS = 2
 
const int KMEANS_USE_INITIAL_LABELS = 1
 
const int NORM_INF = 1
 
const int NORM_L1 = 2
 
const int NORM_L2 = 4
 
const int NORM_L2SQR = 5
 
const int NORM_HAMMING = 6
 
const int NORM_HAMMING2 = 7
 
const int NORM_TYPE_MASK = 7
 
const int NORM_RELATIVE = 8
 
const int NORM_MINMAX = 32
 
const int PCA_DATA_AS_ROW = 0
 
const int PCA_DATA_AS_COL = 1
 
const int PCA_USE_AVG = 2
 
const int Param_INT = 0
 
const int Param_BOOLEAN = 1
 
const int Param_REAL = 2
 
const int Param_STRING = 3
 
const int Param_MAT = 4
 
const int Param_MAT_VECTOR = 5
 
const int Param_ALGORITHM = 6
 
const int Param_FLOAT = 7
 
const int Param_UNSIGNED_INT = 8
 
const int Param_UINT64 = 9
 
const int Param_UCHAR = 11
 
const int Param_SCALAR = 12
 
const int REDUCE_SUM2 = 4
 
const int ROTATE_90_CLOCKWISE = 0
 
const int ROTATE_180 = 1
 
const int ROTATE_90_COUNTERCLOCKWISE = 2
 
const int SORT_EVERY_ROW = 0
 
const int SORT_EVERY_COLUMN = 1
 
const int SORT_ASCENDING = 0
 
const int SORT_DESCENDING = 16
 

Static Public Attributes

static readonly string VERSION = getVersion()
 
static readonly string NATIVE_LIBRARY_NAME = getNativeLibraryName()
 
static readonly int VERSION_MAJOR = getVersionMajorJ()
 
static readonly int VERSION_MINOR = getVersionMinorJ()
 
static readonly int VERSION_REVISION = getVersionRevisionJ()
 
static readonly string VERSION_STATUS = getVersionStatusJ()
 

Member Function Documentation

◆ absdiff() [1/2]

static void OpenCVForUnity.CoreModule.Core.absdiff ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates the per-element absolute difference between two arrays or between an array and a scalar.

The function cv::absdiff calculates: Absolute difference between two arrays when they have the same size and type:

\[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\]

Absolute difference between an array and a scalar when the second array is constructed from Scalar or has as many elements as the number of channels in src1:

\[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\]

Absolute difference between a scalar and an array when the first array is constructed from Scalar or has as many elements as the number of channels in src2:

\[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\]

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

Note
Saturation is not applied when the arrays have the depth CV_32S. You may even get a negative value in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. absdiff(src,X) means absdiff(src,(X,X,X,X)). absdiff(src,(X,)) means absdiff(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as input arrays.
See also
cv::abs(const Mat&)

◆ absdiff() [2/2]

static void OpenCVForUnity.CoreModule.Core.absdiff ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ add() [1/6]

static void OpenCVForUnity.CoreModule.Core.add ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask,
int  dtype 
)
static

Calculates the per-element sum of two arrays or an array and a scalar.

The function add calculates:

  • Sum of two arrays when both input arrays have the same size and the same number of channels:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\]

  • Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\]

  • Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]

    where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions:

dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case, the output array will have the same depth as the input array, be it src1, src2 or both.

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. add(src,X) means add(src,(X,X,X,X)). add(src,(X,)) means add(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and number of channels as the input array(s); the depth is defined by dtype or src1/src2.
maskoptional operation mask - 8-bit single channel array, that specifies elements of the output array to be changed.
dtypeoptional depth of the output array (see the discussion below).
See also
subtract, addWeighted, scaleAdd, Mat::convertTo

◆ add() [2/6]

static void OpenCVForUnity.CoreModule.Core.add ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask 
)
static

Calculates the per-element sum of two arrays or an array and a scalar.

The function add calculates:

  • Sum of two arrays when both input arrays have the same size and the same number of channels:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\]

  • Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\]

  • Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]

    where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions:

dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case, the output array will have the same depth as the input array, be it src1, src2 or both.

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. add(src,X) means add(src,(X,X,X,X)). add(src,(X,)) means add(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and number of channels as the input array(s); the depth is defined by dtype or src1/src2.
maskoptional operation mask - 8-bit single channel array, that specifies elements of the output array to be changed.
dtypeoptional depth of the output array (see the discussion below).
See also
subtract, addWeighted, scaleAdd, Mat::convertTo

◆ add() [3/6]

static void OpenCVForUnity.CoreModule.Core.add ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates the per-element sum of two arrays or an array and a scalar.

The function add calculates:

  • Sum of two arrays when both input arrays have the same size and the same number of channels:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\]

  • Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\]

  • Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]

    where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions:

dst = src1 + src2;
dst += src1; // equivalent to add(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case, the output array will have the same depth as the input array, be it src1, src2 or both.

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. add(src,X) means add(src,(X,X,X,X)). add(src,(X,)) means add(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and number of channels as the input array(s); the depth is defined by dtype or src1/src2.
maskoptional operation mask - 8-bit single channel array, that specifies elements of the output array to be changed.
dtypeoptional depth of the output array (see the discussion below).
See also
subtract, addWeighted, scaleAdd, Mat::convertTo

◆ add() [4/6]

static void OpenCVForUnity.CoreModule.Core.add ( Mat  src1,
Scalar  src2,
Mat  dst,
Mat  mask,
int  dtype 
)
static

◆ add() [5/6]

static void OpenCVForUnity.CoreModule.Core.add ( Mat  src1,
Scalar  src2,
Mat  dst,
Mat  mask 
)
static

◆ add() [6/6]

static void OpenCVForUnity.CoreModule.Core.add ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ addSamplesDataSearchPath()

static void OpenCVForUnity.CoreModule.Core.addSamplesDataSearchPath ( string  path)
static

Override search data path by adding new search location.

Use this only to override default behavior Passed paths are used in LIFO order.

Parameters
pathPath to used samples data

◆ addSamplesDataSearchSubDirectory()

static void OpenCVForUnity.CoreModule.Core.addSamplesDataSearchSubDirectory ( string  subdir)
static

Append samples search data sub directory.

General usage is to add OpenCV modules name (<opencv_contrib>/modules/<name>/samples/data -> <name>/samples/data + modules/<name>/samples/data). Passed subdirectories are used in LIFO order.

Parameters
subdirsamples data sub directory

◆ addWeighted() [1/2]

static void OpenCVForUnity.CoreModule.Core.addWeighted ( Mat  src1,
double  alpha,
Mat  src2,
double  beta,
double  gamma,
Mat  dst,
int  dtype 
)
static

Calculates the weighted sum of two arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:

\[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\]

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently. The function can be replaced with a matrix expression:

dst = src1*alpha + src2*beta + gamma;
Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
Parameters
src1first input array.
alphaweight of the first array elements.
src2second input array of the same size and channel number as src1.
betaweight of the second array elements.
gammascalar added to each sum.
dstoutput array that has the same size and number of channels as the input arrays.
dtypeoptional depth of the output array; when both input arrays have the same depth, dtype can be set to -1, which will be equivalent to src1.depth().
See also
add, subtract, scaleAdd, Mat::convertTo

◆ addWeighted() [2/2]

static void OpenCVForUnity.CoreModule.Core.addWeighted ( Mat  src1,
double  alpha,
Mat  src2,
double  beta,
double  gamma,
Mat  dst 
)
static

Calculates the weighted sum of two arrays.

The function addWeighted calculates the weighted sum of two arrays as follows:

\[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\]

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently. The function can be replaced with a matrix expression:

dst = src1*alpha + src2*beta + gamma;
Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
Parameters
src1first input array.
alphaweight of the first array elements.
src2second input array of the same size and channel number as src1.
betaweight of the second array elements.
gammascalar added to each sum.
dstoutput array that has the same size and number of channels as the input arrays.
dtypeoptional depth of the output array; when both input arrays have the same depth, dtype can be set to -1, which will be equivalent to src1.depth().
See also
add, subtract, scaleAdd, Mat::convertTo

◆ batchDistance() [1/6]

static void OpenCVForUnity.CoreModule.Core.batchDistance ( Mat  src1,
Mat  src2,
Mat  dist,
int  dtype,
Mat  nidx,
int  normType,
int  K,
Mat  mask,
int  update,
bool  crosscheck 
)
static

naive nearest neighbor finder

see http://en.wikipedia.org/wiki/Nearest_neighbor_search

◆ batchDistance() [2/6]

static void OpenCVForUnity.CoreModule.Core.batchDistance ( Mat  src1,
Mat  src2,
Mat  dist,
int  dtype,
Mat  nidx,
int  normType,
int  K,
Mat  mask,
int  update 
)
static

naive nearest neighbor finder

see http://en.wikipedia.org/wiki/Nearest_neighbor_search

◆ batchDistance() [3/6]

static void OpenCVForUnity.CoreModule.Core.batchDistance ( Mat  src1,
Mat  src2,
Mat  dist,
int  dtype,
Mat  nidx,
int  normType,
int  K,
Mat  mask 
)
static

naive nearest neighbor finder

see http://en.wikipedia.org/wiki/Nearest_neighbor_search

◆ batchDistance() [4/6]

static void OpenCVForUnity.CoreModule.Core.batchDistance ( Mat  src1,
Mat  src2,
Mat  dist,
int  dtype,
Mat  nidx,
int  normType,
int  K 
)
static

naive nearest neighbor finder

see http://en.wikipedia.org/wiki/Nearest_neighbor_search

◆ batchDistance() [5/6]

static void OpenCVForUnity.CoreModule.Core.batchDistance ( Mat  src1,
Mat  src2,
Mat  dist,
int  dtype,
Mat  nidx,
int  normType 
)
static

naive nearest neighbor finder

see http://en.wikipedia.org/wiki/Nearest_neighbor_search

◆ batchDistance() [6/6]

static void OpenCVForUnity.CoreModule.Core.batchDistance ( Mat  src1,
Mat  src2,
Mat  dist,
int  dtype,
Mat  nidx 
)
static

naive nearest neighbor finder

see http://en.wikipedia.org/wiki/Nearest_neighbor_search

◆ bitwise_and() [1/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_and ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask 
)
static

computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.

The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for: Two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

\[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\]

A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

\[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.

Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as the input arrays.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_and() [2/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_and ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

computes bitwise conjunction of the two arrays (dst = src1 & src2) Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.

The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for: Two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

\[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\]

A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

\[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.

Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as the input arrays.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_not() [1/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_not ( Mat  src,
Mat  dst,
Mat  mask 
)
static

Inverts every bit of an array.

The function cv::bitwise_not calculates per-element bit-wise inversion of the input array:

\[\texttt{dst} (I) = \neg \texttt{src} (I)\]

In case of a floating-point input array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.

Parameters
srcinput array.
dstoutput array that has the same size and type as the input array.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_not() [2/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_not ( Mat  src,
Mat  dst 
)
static

Inverts every bit of an array.

The function cv::bitwise_not calculates per-element bit-wise inversion of the input array:

\[\texttt{dst} (I) = \neg \texttt{src} (I)\]

In case of a floating-point input array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.

Parameters
srcinput array.
dstoutput array that has the same size and type as the input array.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_or() [1/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_or ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask 
)
static

Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.

The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for: Two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

\[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\]

A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

\[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.

Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as the input arrays.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_or() [2/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_or ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.

The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for: Two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

\[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\]

A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

\[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.

Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as the input arrays.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_xor() [1/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_xor ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask 
)
static

Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.

The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or" operation for: Two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

\[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\]

A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

\[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.

Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as the input arrays.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ bitwise_xor() [2/2]

static void OpenCVForUnity.CoreModule.Core.bitwise_xor ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.

The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or" operation for: Two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

An array and a scalar when src2 is constructed from Scalar or has the same number of elements as src1.channels():

\[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\]

A scalar and an array when src1 is constructed from Scalar or has the same number of elements as src2.channels():

\[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\]

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.

Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array that has the same size and type as the input arrays.
maskoptional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.

◆ borderInterpolate()

static int OpenCVForUnity.CoreModule.Core.borderInterpolate ( int  p,
int  len,
int  borderType 
)
static

Computes the source location of an extrapolated pixel.

The function computes and returns the coordinate of a donor pixel corresponding to the specified extrapolated pixel when using the specified extrapolation border mode. For example, if you use cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it looks like:

float val = img.at&lt;float&gt;(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
borderInterpolate(-5, img.cols, cv::BORDER_WRAP));

Normally, the function is not called directly. It is used inside filtering functions and also in copyMakeBorder.

Parameters
p0-based coordinate of the extrapolated pixel along one of the axes, likely <0 or >= len
lenLength of the array along the corresponding axis.
borderTypeBorder type, one of the #BorderTypes, except for BORDER_TRANSPARENT and BORDER_ISOLATED . When borderType==BORDER_CONSTANT , the function always returns -1, regardless of p and len.
See also
copyMakeBorder

◆ broadcast()

static void OpenCVForUnity.CoreModule.Core.broadcast ( Mat  src,
Mat  shape,
Mat  dst 
)
static

Broadcast the given Mat to the given shape.

Parameters
srcinput array
shapetarget shape. Should be a list of CV_32S numbers. Note that negative values are not supported.
dstoutput array that has the given shape

◆ calcCovarMatrix() [1/2]

static void OpenCVForUnity.CoreModule.Core.calcCovarMatrix ( Mat  samples,
Mat  covar,
Mat  mean,
int  flags,
int  ctype 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Note
use COVAR_ROWS or COVAR_COLS flag
Parameters
samplessamples stored as rows/columns of a single matrix.
covaroutput covariance matrix of the type ctype and square size.
meaninput or output (depending on the flags) array as the average value of the input vectors.
flagsoperation flags as a combination of #CovarFlags
ctypetype of the matrixl; it equals 'CV_64F' by default.

◆ calcCovarMatrix() [2/2]

static void OpenCVForUnity.CoreModule.Core.calcCovarMatrix ( Mat  samples,
Mat  covar,
Mat  mean,
int  flags 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Note
use COVAR_ROWS or COVAR_COLS flag
Parameters
samplessamples stored as rows/columns of a single matrix.
covaroutput covariance matrix of the type ctype and square size.
meaninput or output (depending on the flags) array as the average value of the input vectors.
flagsoperation flags as a combination of #CovarFlags
ctypetype of the matrixl; it equals 'CV_64F' by default.

◆ cartToPolar() [1/2]

static void OpenCVForUnity.CoreModule.Core.cartToPolar ( Mat  x,
Mat  y,
Mat  magnitude,
Mat  angle,
bool  angleInDegrees 
)
static

Calculates the magnitude and angle of 2D vectors.

The function cv::cartToPolar calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):

\[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\]

The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.

Parameters
xarray of x-coordinates; this must be a single-precision or double-precision floating-point array.
yarray of y-coordinates, that must have the same size and same type as x.
magnitudeoutput array of magnitudes of the same size and type as x.
angleoutput array of angles that has the same size and type as x; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).
angleInDegreesa flag, indicating whether the angles are measured in radians (which is by default), or in degrees.
See also
Sobel, Scharr

◆ cartToPolar() [2/2]

static void OpenCVForUnity.CoreModule.Core.cartToPolar ( Mat  x,
Mat  y,
Mat  magnitude,
Mat  angle 
)
static

Calculates the magnitude and angle of 2D vectors.

The function cv::cartToPolar calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):

\[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\]

The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.

Parameters
xarray of x-coordinates; this must be a single-precision or double-precision floating-point array.
yarray of y-coordinates, that must have the same size and same type as x.
magnitudeoutput array of magnitudes of the same size and type as x.
angleoutput array of angles that has the same size and type as x; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).
angleInDegreesa flag, indicating whether the angles are measured in radians (which is by default), or in degrees.
See also
Sobel, Scharr

◆ checkHardwareSupport()

static bool OpenCVForUnity.CoreModule.Core.checkHardwareSupport ( int  feature)
static

Returns true if the specified feature is supported by the host hardware.

The function returns true if the host hardware supports the specified feature. When user calls setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code in OpenCV.

Parameters
featureThe feature of interest, one of cv::CpuFeatures

◆ checkRange() [1/4]

static bool OpenCVForUnity.CoreModule.Core.checkRange ( Mat  a,
bool  quiet,
double  minVal,
double  maxVal 
)
static

Checks every element of an input array for invalid values.

The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal > -DBL_MAX and maxVal < DBL_MAX, the function also checks that each value is between minVal and maxVal. In case of multi-channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the function either returns false (when quiet=true) or throws an exception.

Parameters
ainput array.
quieta flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
posoptional output parameter, when not NULL, must be a pointer to array of src.dims elements.
minValinclusive lower boundary of valid values range.
maxValexclusive upper boundary of valid values range.

◆ checkRange() [2/4]

static bool OpenCVForUnity.CoreModule.Core.checkRange ( Mat  a,
bool  quiet,
double  minVal 
)
static

Checks every element of an input array for invalid values.

The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal > -DBL_MAX and maxVal < DBL_MAX, the function also checks that each value is between minVal and maxVal. In case of multi-channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the function either returns false (when quiet=true) or throws an exception.

Parameters
ainput array.
quieta flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
posoptional output parameter, when not NULL, must be a pointer to array of src.dims elements.
minValinclusive lower boundary of valid values range.
maxValexclusive upper boundary of valid values range.

◆ checkRange() [3/4]

static bool OpenCVForUnity.CoreModule.Core.checkRange ( Mat  a,
bool  quiet 
)
static

Checks every element of an input array for invalid values.

The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal > -DBL_MAX and maxVal < DBL_MAX, the function also checks that each value is between minVal and maxVal. In case of multi-channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the function either returns false (when quiet=true) or throws an exception.

Parameters
ainput array.
quieta flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
posoptional output parameter, when not NULL, must be a pointer to array of src.dims elements.
minValinclusive lower boundary of valid values range.
maxValexclusive upper boundary of valid values range.

◆ checkRange() [4/4]

static bool OpenCVForUnity.CoreModule.Core.checkRange ( Mat  a)
static

Checks every element of an input array for invalid values.

The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal > -DBL_MAX and maxVal < DBL_MAX, the function also checks that each value is between minVal and maxVal. In case of multi-channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the function either returns false (when quiet=true) or throws an exception.

Parameters
ainput array.
quieta flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
posoptional output parameter, when not NULL, must be a pointer to array of src.dims elements.
minValinclusive lower boundary of valid values range.
maxValexclusive upper boundary of valid values range.

◆ compare() [1/2]

static void OpenCVForUnity.CoreModule.Core.compare ( Mat  src1,
Mat  src2,
Mat  dst,
int  cmpop 
)
static

Performs the per-element comparison of two arrays or an array and scalar value.

The function compares: Elements of two arrays when src1 and src2 have the same size:

\[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\]

Elements of src1 with a scalar src2 when src2 is constructed from Scalar or has a single element:

\[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\]

src1 with elements of src2 when src1 is constructed from Scalar or has a single element:

\[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\]

When the comparison result is true, the corresponding element of output array is set to 255. The comparison operations can be replaced with the equivalent matrix expressions:

Mat dst1 = src1 &gt;= src2;
Mat dst2 = src1 &lt; 8;
...
Parameters
src1first input array or a scalar; when it is an array, it must have a single channel.
src2second input array or a scalar; when it is an array, it must have a single channel.
dstoutput array of type ref CV_8U that has the same size and the same number of channels as the input arrays.
cmpopa flag, that specifies correspondence between the arrays (cv::CmpTypes)
See also
checkRange, min, max, threshold

◆ compare() [2/2]

static void OpenCVForUnity.CoreModule.Core.compare ( Mat  src1,
Scalar  src2,
Mat  dst,
int  cmpop 
)
static

◆ completeSymm() [1/2]

static void OpenCVForUnity.CoreModule.Core.completeSymm ( Mat  m,
bool  lowerToUpper 
)
static

Copies the lower or the upper half of a square matrix to its another half.

The function cv::completeSymm copies the lower or the upper half of a square matrix to its another half. The matrix diagonal remains unchanged:

  • \(\texttt{m}_{ij}=\texttt{m}_{ji}\) for \(i > j\) if lowerToUpper=false
  • \(\texttt{m}_{ij}=\texttt{m}_{ji}\) for \(i < j\) if lowerToUpper=true
Parameters
minput-output floating-point square matrix.
lowerToUpperoperation flag; if true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.
See also
flip, transpose

◆ completeSymm() [2/2]

static void OpenCVForUnity.CoreModule.Core.completeSymm ( Mat  m)
static

Copies the lower or the upper half of a square matrix to its another half.

The function cv::completeSymm copies the lower or the upper half of a square matrix to its another half. The matrix diagonal remains unchanged:

  • \(\texttt{m}_{ij}=\texttt{m}_{ji}\) for \(i > j\) if lowerToUpper=false
  • \(\texttt{m}_{ij}=\texttt{m}_{ji}\) for \(i < j\) if lowerToUpper=true
Parameters
minput-output floating-point square matrix.
lowerToUpperoperation flag; if true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.
See also
flip, transpose

◆ convertFp16()

static void OpenCVForUnity.CoreModule.Core.convertFp16 ( Mat  src,
Mat  dst 
)
static

Converts an array to half precision floating number.

This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). CV_16S format is used to represent FP16 data. There are two use modes (src -> dst): CV_32F -> CV_16S and CV_16S -> CV_32F. The input array has to have type of CV_32F or CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error. The format of half precision floating point is defined in IEEE 754-2008.

Parameters
srcinput array.
dstoutput array.

◆ convertScaleAbs() [1/3]

static void OpenCVForUnity.CoreModule.Core.convertScaleAbs ( Mat  src,
Mat  dst,
double  alpha,
double  beta 
)
static

Scales, calculates absolute values, and converts the result to 8-bit.

On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:

\[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\]

In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the Mat::convertTo method (or by using matrix expressions) and then by calculating an absolute value of the result. For example:

Mat_&lt;float&gt; A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_&lt;float&gt; B = A*5 + 3;
B = abs(B);
// Mat_&lt;float&gt; B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
Parameters
srcinput array.
dstoutput array.
alphaoptional scale factor.
betaoptional delta added to the scaled values.
See also
Mat::convertTo, cv::abs(const Mat&)

◆ convertScaleAbs() [2/3]

static void OpenCVForUnity.CoreModule.Core.convertScaleAbs ( Mat  src,
Mat  dst,
double  alpha 
)
static

Scales, calculates absolute values, and converts the result to 8-bit.

On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:

\[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\]

In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the Mat::convertTo method (or by using matrix expressions) and then by calculating an absolute value of the result. For example:

Mat_&lt;float&gt; A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_&lt;float&gt; B = A*5 + 3;
B = abs(B);
// Mat_&lt;float&gt; B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
Parameters
srcinput array.
dstoutput array.
alphaoptional scale factor.
betaoptional delta added to the scaled values.
See also
Mat::convertTo, cv::abs(const Mat&)

◆ convertScaleAbs() [3/3]

static void OpenCVForUnity.CoreModule.Core.convertScaleAbs ( Mat  src,
Mat  dst 
)
static

Scales, calculates absolute values, and converts the result to 8-bit.

On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:

\[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\]

In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the Mat::convertTo method (or by using matrix expressions) and then by calculating an absolute value of the result. For example:

Mat_&lt;float&gt; A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_&lt;float&gt; B = A*5 + 3;
B = abs(B);
// Mat_&lt;float&gt; B = abs(A*5+3) will also do the job,
// but it will allocate a temporary matrix
Parameters
srcinput array.
dstoutput array.
alphaoptional scale factor.
betaoptional delta added to the scaled values.
See also
Mat::convertTo, cv::abs(const Mat&)

◆ copyMakeBorder() [1/2]

static void OpenCVForUnity.CoreModule.Core.copyMakeBorder ( Mat  src,
Mat  dst,
int  top,
int  bottom,
int  left,
int  right,
int  borderType,
Scalar  value 
)
static

Forms a border around an image.

The function copies the source image into the middle of the destination image. The areas to the left, to the right, above and below the copied source image will be filled with extrapolated pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but what other more complex functions, including your own, may do to simplify image boundary handling.

The function supports the mode when src is already in the middle of dst . In this case, the function does not copy src itself but simply constructs the border, for example:

// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, COLOR_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
Note
When the source image is a part (ROI) of a bigger image, the function will try to use the pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as if src was not a ROI, use borderType | BORDER_ISOLATED.
Parameters
srcSource image.
dstDestination image of the same type as src and the size Size(src.cols+left+right, src.rows+top+bottom) .
topthe top pixels
bottomthe bottom pixels
leftthe left pixels
rightParameter specifying how many pixels in each direction from the source image rectangle to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.
borderTypeBorder type. See borderInterpolate for details.
valueBorder value if borderType==BORDER_CONSTANT .
See also
borderInterpolate

◆ copyMakeBorder() [2/2]

static void OpenCVForUnity.CoreModule.Core.copyMakeBorder ( Mat  src,
Mat  dst,
int  top,
int  bottom,
int  left,
int  right,
int  borderType 
)
static

Forms a border around an image.

The function copies the source image into the middle of the destination image. The areas to the left, to the right, above and below the copied source image will be filled with extrapolated pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but what other more complex functions, including your own, may do to simplify image boundary handling.

The function supports the mode when src is already in the middle of dst . In this case, the function does not copy src itself but simply constructs the border, for example:

// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, COLOR_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...
...
Note
When the source image is a part (ROI) of a bigger image, the function will try to use the pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as if src was not a ROI, use borderType | BORDER_ISOLATED.
Parameters
srcSource image.
dstDestination image of the same type as src and the size Size(src.cols+left+right, src.rows+top+bottom) .
topthe top pixels
bottomthe bottom pixels
leftthe left pixels
rightParameter specifying how many pixels in each direction from the source image rectangle to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.
borderTypeBorder type. See borderInterpolate for details.
valueBorder value if borderType==BORDER_CONSTANT .
See also
borderInterpolate

◆ copyTo()

static void OpenCVForUnity.CoreModule.Core.copyTo ( Mat  src,
Mat  dst,
Mat  mask 
)
static

This is an overloaded member function, provided for convenience (python) Copies the matrix to another one. When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.

Parameters
srcsource matrix.
dstDestination matrix. If it does not have a proper size or type before the operation, it is reallocated.
maskOperation mask of the same size as *this. Its non-zero elements indicate which matrix elements need to be copied. The mask has to be of type CV_8U and can have 1 or multiple channels.

◆ countNonZero()

static int OpenCVForUnity.CoreModule.Core.countNonZero ( Mat  src)
static

Counts non-zero array elements.

The function returns the number of non-zero elements in src :

\[\sum _{I: \; \texttt{src} (I) \ne0 } 1\]

Parameters
srcsingle-channel array.
See also
mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix

◆ cubeRoot()

static float OpenCVForUnity.CoreModule.Core.cubeRoot ( float  val)
static

Computes the cube root of an argument.

The function cubeRoot computes \(\sqrt[3]{\texttt{val}}\). Negative arguments are handled correctly. NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for single-precision data.

Parameters
valA function argument.

◆ dct() [1/2]

static void OpenCVForUnity.CoreModule.Core.dct ( Mat  src,
Mat  dst,
int  flags 
)
static

Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:

  • Forward Cosine transform of a 1D vector of N elements:

    \[Y = C^{(N)} \cdot X\]

    where

    \[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\]

    and \(\alpha_0=1\), \(\alpha_j=2\) for j > 0.
  • Inverse Cosine transform of a 1D vector of N elements:

    \[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\]

    (since \(C^{(N)}\) is an orthogonal matrix, \(C^{(N)} \cdot \left(C^{(N)}\right)^T = I\) )
  • Forward 2D Cosine transform of M x N matrix:

    \[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\]

  • Inverse 2D Cosine transform of M x N matrix:

    \[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\]

The function chooses the mode of operation by looking at the flags and size of the input array:

  • If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
  • If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
  • If the array is a single column or a single row, the function performs a 1D transform.
  • If none of the above is true, the function performs a 2D transform.
Note
Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary. Also, the function performance depends very much, and not monotonically, on the array size (see getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT of a vector of size N/2 . Thus, the optimal DCT size N1 >= N can be calculated as:
size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);
Parameters
srcinput floating-point array.
dstoutput array of the same size and type as src .
flagstransformation flags as a combination of cv::DftFlags (DCT_*)
See also
dft , getOptimalDFTSize , idct

◆ dct() [2/2]

static void OpenCVForUnity.CoreModule.Core.dct ( Mat  src,
Mat  dst 
)
static

Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:

  • Forward Cosine transform of a 1D vector of N elements:

    \[Y = C^{(N)} \cdot X\]

    where

    \[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\]

    and \(\alpha_0=1\), \(\alpha_j=2\) for j > 0.
  • Inverse Cosine transform of a 1D vector of N elements:

    \[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\]

    (since \(C^{(N)}\) is an orthogonal matrix, \(C^{(N)} \cdot \left(C^{(N)}\right)^T = I\) )
  • Forward 2D Cosine transform of M x N matrix:

    \[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\]

  • Inverse 2D Cosine transform of M x N matrix:

    \[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\]

The function chooses the mode of operation by looking at the flags and size of the input array:

  • If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
  • If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
  • If the array is a single column or a single row, the function performs a 1D transform.
  • If none of the above is true, the function performs a 2D transform.
Note
Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary. Also, the function performance depends very much, and not monotonically, on the array size (see getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT of a vector of size N/2 . Thus, the optimal DCT size N1 >= N can be calculated as:
size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);
Parameters
srcinput floating-point array.
dstoutput array of the same size and type as src .
flagstransformation flags as a combination of cv::DftFlags (DCT_*)
See also
dft , getOptimalDFTSize , idct

◆ determinant()

static double OpenCVForUnity.CoreModule.Core.determinant ( Mat  mtx)
static

Returns the determinant of a square floating-point matrix.

The function cv::determinant calculates and returns the determinant of the specified matrix. For small matrices ( mtx.cols=mtx.rows<=3 ), the direct method is used. For larger matrices, the function uses LU factorization with partial pivoting.

For symmetric positively-determined matrices, it is also possible to use eigen decomposition to calculate the determinant.

Parameters
mtxinput matrix that must have CV_32FC1 or CV_64FC1 type and square size.
See also
trace, invert, solve, eigen, MatrixExpressions

◆ dft() [1/3]

static void OpenCVForUnity.CoreModule.Core.dft ( Mat  src,
Mat  dst,
int  flags,
int  nonzeroRows 
)
static

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

The function cv::dft performs one of the following:

  • Forward the Fourier transform of a 1D vector of N elements:

    \[Y = F^{(N)} \cdot X,\]

    where \(F^{(N)}_{jk}=\exp(-2\pi i j k/N)\) and \(i=\sqrt{-1}\)
  • Inverse the Fourier transform of a 1D vector of N elements:

    \[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\]

    where \(F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\)
  • Forward the 2D Fourier transform of a M x N matrix:

    \[Y = F^{(M)} \cdot X \cdot F^{(N)}\]

  • Inverse the 2D Fourier transform of a M x N matrix:

    \[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\]

In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called CCS (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D CCS spectrum looks:

\[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\]

In case of 1D transform of a real vector, the output looks like the first row of the matrix above.

So, the function chooses an operation mode depending on the flags and size of the input array:

  • If DFT_ROWS is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set. Otherwise, it performs a 2D transform.
  • If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or 2D transform:
    • When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as input.
    • When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix looks like the first row of the matrix above.
  • If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags DFT_INVERSE and DFT_ROWS.
  • When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags DFT_INVERSE and DFT_ROWS.

If DFT_SCALE is set, the scaling is done after the transformation.

Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize method.

The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:

void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A &amp; B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}

To optimize this sample, consider the following approaches:

  • Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) rightmost columns of the matrices.
  • This DFT-based convolution does not have to be applied to the whole big arrays, especially if B is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array C into multiple tiles. For each tile, estimate which parts of A and B are required to calculate convolution in this tile. If the tiles in C are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.
  • If different tiles in C can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.

All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand B vertically and horizontally using flip .

Note
  • An example using the discrete fourier transform can be found at opencv_source_code/samples/cpp/dft.cpp
  • (Python) An example using the dft functionality to perform Wiener deconvolution can be found at opencv_source/samples/python/deconvolution.py
  • (Python) An example rearranging the quadrants of a Fourier image can be found at opencv_source/samples/python/dft.py
Parameters
srcinput array that could be real or complex.
dstoutput array whose size and type depends on the flags .
flagstransformation flags, representing a combination of the #DftFlags
nonzeroRowswhen the parameter is not zero, the function assumes that only the first nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.
See also
dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar , magnitude , phase

◆ dft() [2/3]

static void OpenCVForUnity.CoreModule.Core.dft ( Mat  src,
Mat  dst,
int  flags 
)
static

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

The function cv::dft performs one of the following:

  • Forward the Fourier transform of a 1D vector of N elements:

    \[Y = F^{(N)} \cdot X,\]

    where \(F^{(N)}_{jk}=\exp(-2\pi i j k/N)\) and \(i=\sqrt{-1}\)
  • Inverse the Fourier transform of a 1D vector of N elements:

    \[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\]

    where \(F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\)
  • Forward the 2D Fourier transform of a M x N matrix:

    \[Y = F^{(M)} \cdot X \cdot F^{(N)}\]

  • Inverse the 2D Fourier transform of a M x N matrix:

    \[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\]

In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called CCS (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D CCS spectrum looks:

\[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\]

In case of 1D transform of a real vector, the output looks like the first row of the matrix above.

So, the function chooses an operation mode depending on the flags and size of the input array:

  • If DFT_ROWS is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set. Otherwise, it performs a 2D transform.
  • If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or 2D transform:
    • When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as input.
    • When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix looks like the first row of the matrix above.
  • If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags DFT_INVERSE and DFT_ROWS.
  • When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags DFT_INVERSE and DFT_ROWS.

If DFT_SCALE is set, the scaling is done after the transformation.

Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize method.

The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:

void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A &amp; B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}

To optimize this sample, consider the following approaches:

  • Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) rightmost columns of the matrices.
  • This DFT-based convolution does not have to be applied to the whole big arrays, especially if B is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array C into multiple tiles. For each tile, estimate which parts of A and B are required to calculate convolution in this tile. If the tiles in C are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.
  • If different tiles in C can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.

All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand B vertically and horizontally using flip .

Note
  • An example using the discrete fourier transform can be found at opencv_source_code/samples/cpp/dft.cpp
  • (Python) An example using the dft functionality to perform Wiener deconvolution can be found at opencv_source/samples/python/deconvolution.py
  • (Python) An example rearranging the quadrants of a Fourier image can be found at opencv_source/samples/python/dft.py
Parameters
srcinput array that could be real or complex.
dstoutput array whose size and type depends on the flags .
flagstransformation flags, representing a combination of the #DftFlags
nonzeroRowswhen the parameter is not zero, the function assumes that only the first nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.
See also
dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar , magnitude , phase

◆ dft() [3/3]

static void OpenCVForUnity.CoreModule.Core.dft ( Mat  src,
Mat  dst 
)
static

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.

The function cv::dft performs one of the following:

  • Forward the Fourier transform of a 1D vector of N elements:

    \[Y = F^{(N)} \cdot X,\]

    where \(F^{(N)}_{jk}=\exp(-2\pi i j k/N)\) and \(i=\sqrt{-1}\)
  • Inverse the Fourier transform of a 1D vector of N elements:

    \[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\]

    where \(F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\)
  • Forward the 2D Fourier transform of a M x N matrix:

    \[Y = F^{(M)} \cdot X \cdot F^{(N)}\]

  • Inverse the 2D Fourier transform of a M x N matrix:

    \[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\]

In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called CCS (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D CCS spectrum looks:

\[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\]

In case of 1D transform of a real vector, the output looks like the first row of the matrix above.

So, the function chooses an operation mode depending on the flags and size of the input array:

  • If DFT_ROWS is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set. Otherwise, it performs a 2D transform.
  • If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or 2D transform:
    • When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as input.
    • When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix looks like the first row of the matrix above.
  • If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags DFT_INVERSE and DFT_ROWS.
  • When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags DFT_INVERSE and DFT_ROWS.

If DFT_SCALE is set, the scaling is done after the transformation.

Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize method.

The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:

void convolveDFT(InputArray A, InputArray B, OutputArray C)
{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// calculate the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
// allocate temporary buffers and initialize them with 0's
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));
// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
A.copyTo(roiA);
Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
B.copyTo(roiB);
// now transform the padded A &amp; B in-place;
// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);
dft(tempB, tempB, 0, B.rows);
// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums(tempA, tempB, tempA);
// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,
// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows
dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
// now copy the result back to C.
tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
// all the temporary buffers will be deallocated automatically
}

To optimize this sample, consider the following approaches:

  • Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) rightmost columns of the matrices.
  • This DFT-based convolution does not have to be applied to the whole big arrays, especially if B is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array C into multiple tiles. For each tile, estimate which parts of A and B are required to calculate convolution in this tile. If the tiles in C are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.
  • If different tiles in C can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.

All of the above improvements have been implemented in #matchTemplate and #filter2D . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand B vertically and horizontally using flip .

Note
  • An example using the discrete fourier transform can be found at opencv_source_code/samples/cpp/dft.cpp
  • (Python) An example using the dft functionality to perform Wiener deconvolution can be found at opencv_source/samples/python/deconvolution.py
  • (Python) An example rearranging the quadrants of a Fourier image can be found at opencv_source/samples/python/dft.py
Parameters
srcinput array that could be real or complex.
dstoutput array whose size and type depends on the flags .
flagstransformation flags, representing a combination of the #DftFlags
nonzeroRowswhen the parameter is not zero, the function assumes that only the first nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.
See also
dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar , magnitude , phase

◆ divide() [1/8]

static void OpenCVForUnity.CoreModule.Core.divide ( Mat  src1,
Mat  src2,
Mat  dst,
double  scale,
int  dtype 
)
static

Performs per-element division of two arrays or a scalar by an array.

The function cv::divide divides one array by another:

\[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\]

or a scalar by an array when there is no src1 :

\[\texttt{dst(I) = saturate(scale/src2(I))}\]

Different channels of multi-channel arrays are processed independently.

For integer types when src2(I) is zero, dst(I) will also be zero.

Note
In case of floating point data there is no special defined behavior for zero src2(I) values. Regular floating-point division is used. Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. divide(src,X) means divide(src,(X,X,X,X)). divide(src,(X,)) means divide(src,(X,0,0,0)).
Parameters
src1first input array.
src2second input array of the same size and type as src1.
scalescalar factor.
dstoutput array of the same size and type as src2.
dtypeoptional depth of the output array; if -1, dst will have depth src2.depth(), but in case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
See also
multiply, add, subtract

◆ divide() [2/8]

static void OpenCVForUnity.CoreModule.Core.divide ( Mat  src1,
Mat  src2,
Mat  dst,
double  scale 
)
static

Performs per-element division of two arrays or a scalar by an array.

The function cv::divide divides one array by another:

\[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\]

or a scalar by an array when there is no src1 :

\[\texttt{dst(I) = saturate(scale/src2(I))}\]

Different channels of multi-channel arrays are processed independently.

For integer types when src2(I) is zero, dst(I) will also be zero.

Note
In case of floating point data there is no special defined behavior for zero src2(I) values. Regular floating-point division is used. Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. divide(src,X) means divide(src,(X,X,X,X)). divide(src,(X,)) means divide(src,(X,0,0,0)).
Parameters
src1first input array.
src2second input array of the same size and type as src1.
scalescalar factor.
dstoutput array of the same size and type as src2.
dtypeoptional depth of the output array; if -1, dst will have depth src2.depth(), but in case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
See also
multiply, add, subtract

◆ divide() [3/8]

static void OpenCVForUnity.CoreModule.Core.divide ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Performs per-element division of two arrays or a scalar by an array.

The function cv::divide divides one array by another:

\[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\]

or a scalar by an array when there is no src1 :

\[\texttt{dst(I) = saturate(scale/src2(I))}\]

Different channels of multi-channel arrays are processed independently.

For integer types when src2(I) is zero, dst(I) will also be zero.

Note
In case of floating point data there is no special defined behavior for zero src2(I) values. Regular floating-point division is used. Expect correct IEEE-754 behaviour for floating-point data (with NaN, Inf result values).
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. divide(src,X) means divide(src,(X,X,X,X)). divide(src,(X,)) means divide(src,(X,0,0,0)).
Parameters
src1first input array.
src2second input array of the same size and type as src1.
scalescalar factor.
dstoutput array of the same size and type as src2.
dtypeoptional depth of the output array; if -1, dst will have depth src2.depth(), but in case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
See also
multiply, add, subtract

◆ divide() [4/8]

static void OpenCVForUnity.CoreModule.Core.divide ( double  scale,
Mat  src2,
Mat  dst,
int  dtype 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ divide() [5/8]

static void OpenCVForUnity.CoreModule.Core.divide ( double  scale,
Mat  src2,
Mat  dst 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ divide() [6/8]

static void OpenCVForUnity.CoreModule.Core.divide ( Mat  src1,
Scalar  src2,
Mat  dst,
double  scale,
int  dtype 
)
static

◆ divide() [7/8]

static void OpenCVForUnity.CoreModule.Core.divide ( Mat  src1,
Scalar  src2,
Mat  dst,
double  scale 
)
static

◆ divide() [8/8]

static void OpenCVForUnity.CoreModule.Core.divide ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ eigen() [1/2]

static bool OpenCVForUnity.CoreModule.Core.eigen ( Mat  src,
Mat  eigenvalues,
Mat  eigenvectors 
)
static

Calculates eigenvalues and eigenvectors of a symmetric matrix.

The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix src:

src*eigenvectors.row(i).t() = eigenvalues.at&lt;srcType&gt;(i)*eigenvectors.row(i).t()
Note
Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
Parameters
srcinput matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical (src ^T^ == src).
eigenvaluesoutput vector of eigenvalues of the same type as src; the eigenvalues are stored in the descending order.
eigenvectorsoutput matrix of eigenvectors; it has the same size and type as src; the eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
See also
eigenNonSymmetric, completeSymm , PCA

◆ eigen() [2/2]

static bool OpenCVForUnity.CoreModule.Core.eigen ( Mat  src,
Mat  eigenvalues 
)
static

Calculates eigenvalues and eigenvectors of a symmetric matrix.

The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix src:

src*eigenvectors.row(i).t() = eigenvalues.at&lt;srcType&gt;(i)*eigenvectors.row(i).t()
Note
Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
Parameters
srcinput matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical (src ^T^ == src).
eigenvaluesoutput vector of eigenvalues of the same type as src; the eigenvalues are stored in the descending order.
eigenvectorsoutput matrix of eigenvectors; it has the same size and type as src; the eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
See also
eigenNonSymmetric, completeSymm , PCA

◆ eigenNonSymmetric()

static void OpenCVForUnity.CoreModule.Core.eigenNonSymmetric ( Mat  src,
Mat  eigenvalues,
Mat  eigenvectors 
)
static

Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).

Note
Assumes real eigenvalues.

The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:

src*eigenvectors.row(i).t() = eigenvalues.at&lt;srcType&gt;(i)*eigenvectors.row(i).t()
Parameters
srcinput matrix (CV_32FC1 or CV_64FC1 type).
eigenvaluesoutput vector of eigenvalues (type is the same type as src).
eigenvectorsoutput matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
See also
eigen

◆ exp()

static void OpenCVForUnity.CoreModule.Core.exp ( Mat  src,
Mat  dst 
)
static

Calculates the exponent of every array element.

The function cv::exp calculates the exponent of every element of the input array:

\[\texttt{dst} [I] = e^{ src(I) }\]

The maximum relative error is about 7e-6 for single-precision input and less than 1e-10 for double-precision input. Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.

Parameters
srcinput array.
dstoutput array of the same size and type as src.
See also
log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude

◆ extractChannel()

static void OpenCVForUnity.CoreModule.Core.extractChannel ( Mat  src,
Mat  dst,
int  coi 
)
static

Extracts a single channel from src (coi is 0-based index)

Parameters
srcinput array
dstoutput array
coiindex of channel to extract
See also
mixChannels, split

◆ fastAtan2()

static float OpenCVForUnity.CoreModule.Core.fastAtan2 ( float  y,
float  x 
)
static

Calculates the angle of a 2D vector in degrees.

The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.

Parameters
xx-coordinate of the vector.
yy-coordinate of the vector.

◆ findFile() [1/3]

static string OpenCVForUnity.CoreModule.Core.findFile ( string  relative_path,
bool  required,
bool  silentMode 
)
static

Try to find requested data file.

Search directories:

  1. Directories passed via addSamplesDataSearchPath()
  2. OPENCV_SAMPLES_DATA_PATH_HINT environment variable
  3. OPENCV_SAMPLES_DATA_PATH environment variable If parameter value is not empty and nothing is found then stop searching.
  4. Detects build/install path based on: a. current working directory (CWD) b. and/or binary module location (opencv_core/opencv_world, doesn't work with static linkage)
  5. Scan <source>/{,data,samples/data} directories if build directory is detected or the current directory is in source tree.
  6. Scan <install>/share/OpenCV directory if install directory is detected.
See also
cv::utils::findDataFile
Parameters
relative_pathRelative path to data file
requiredSpecify "file not found" handling. If true, function prints information message and raises cv::Exception. If false, function returns empty result
silentModeDisables messages
Returns
Returns path (absolute or relative to the current directory) or empty string if file is not found

◆ findFile() [2/3]

static string OpenCVForUnity.CoreModule.Core.findFile ( string  relative_path,
bool  required 
)
static

Try to find requested data file.

Search directories:

  1. Directories passed via addSamplesDataSearchPath()
  2. OPENCV_SAMPLES_DATA_PATH_HINT environment variable
  3. OPENCV_SAMPLES_DATA_PATH environment variable If parameter value is not empty and nothing is found then stop searching.
  4. Detects build/install path based on: a. current working directory (CWD) b. and/or binary module location (opencv_core/opencv_world, doesn't work with static linkage)
  5. Scan <source>/{,data,samples/data} directories if build directory is detected or the current directory is in source tree.
  6. Scan <install>/share/OpenCV directory if install directory is detected.
See also
cv::utils::findDataFile
Parameters
relative_pathRelative path to data file
requiredSpecify "file not found" handling. If true, function prints information message and raises cv::Exception. If false, function returns empty result
silentModeDisables messages
Returns
Returns path (absolute or relative to the current directory) or empty string if file is not found

◆ findFile() [3/3]

static string OpenCVForUnity.CoreModule.Core.findFile ( string  relative_path)
static

Try to find requested data file.

Search directories:

  1. Directories passed via addSamplesDataSearchPath()
  2. OPENCV_SAMPLES_DATA_PATH_HINT environment variable
  3. OPENCV_SAMPLES_DATA_PATH environment variable If parameter value is not empty and nothing is found then stop searching.
  4. Detects build/install path based on: a. current working directory (CWD) b. and/or binary module location (opencv_core/opencv_world, doesn't work with static linkage)
  5. Scan <source>/{,data,samples/data} directories if build directory is detected or the current directory is in source tree.
  6. Scan <install>/share/OpenCV directory if install directory is detected.
See also
cv::utils::findDataFile
Parameters
relative_pathRelative path to data file
requiredSpecify "file not found" handling. If true, function prints information message and raises cv::Exception. If false, function returns empty result
silentModeDisables messages
Returns
Returns path (absolute or relative to the current directory) or empty string if file is not found

◆ findFileOrKeep() [1/2]

static string OpenCVForUnity.CoreModule.Core.findFileOrKeep ( string  relative_path,
bool  silentMode 
)
static

◆ findFileOrKeep() [2/2]

static string OpenCVForUnity.CoreModule.Core.findFileOrKeep ( string  relative_path)
static

◆ findNonZero()

static void OpenCVForUnity.CoreModule.Core.findNonZero ( Mat  src,
Mat  idx 
)
static

Returns the list of locations of non-zero pixels.

Given a binary matrix (likely returned from an operation such as threshold(), compare(), >, ==, etc, return all of the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y) For example:

cv::Mat binaryImage; // input, binary image
cv::Mat locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations.at&lt;Point&gt;(i);

or

cv::Mat binaryImage; // input, binary image
vector&lt;Point&gt; locations; // output, locations of non-zero pixels
cv::findNonZero(binaryImage, locations);
// access pixel coordinates
Point pnt = locations[i];
Parameters
srcsingle-channel array
idxthe output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input

◆ flip()

static void OpenCVForUnity.CoreModule.Core.flip ( Mat  src,
Mat  dst,
int  flipCode 
)
static

Flips a 2D array around vertical, horizontal, or both axes.

The function cv::flip flips the array in one of three different ways (row and column indices are 0-based):

\[\texttt{dst} _{ij} = \left\{ \begin{array}{l l} \texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\ \texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\ \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\ \end{array} \right.\]

The example scenarios of using the function are the following: Vertical flipping of the image (flipCode == 0) to switch between top-left and bottom-left image origin. This is a typical operation in video processing on Microsoft Windows* OS. Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check for a vertical-axis symmetry (flipCode > 0). Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference calculation to check for a central symmetry (flipCode < 0). Reversing the order of point arrays (flipCode > 0 or flipCode == 0).

Parameters
srcinput array.
dstoutput array of the same size and type as src.
flipCodea flag to specify how to flip the array; 0 means flipping around the x-axis and positive value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means flipping around both axes.
See also
transpose , repeat , completeSymm

◆ flipND()

static void OpenCVForUnity.CoreModule.Core.flipND ( Mat  src,
Mat  dst,
int  axis 
)
static

Flips a n-dimensional at given axis.

Parameters
srcinput array
dstoutput array that has the same shape of src
axisaxis that performs a flip on. 0 <= axis < src.dims.

◆ gemm() [1/2]

static void OpenCVForUnity.CoreModule.Core.gemm ( Mat  src1,
Mat  src2,
double  alpha,
Mat  src3,
double  beta,
Mat  dst,
int  flags 
)
static

Performs generalized matrix multiplication.

The function cv::gemm performs generalized matrix multiplication similar to the gemm functions in BLAS level 3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to

\[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\]

In case of complex (two-channel) data, performed a complex matrix multiplication.

The function can be replaced with a matrix expression. For example, the above call can be replaced with:

dst = alpha*src1.t()*src2 + beta*src3.t();
Parameters
src1first multiplied input matrix that could be real(CV_32FC1, CV_64FC1) or complex(CV_32FC2, CV_64FC2).
src2second multiplied input matrix of the same type as src1.
alphaweight of the matrix product.
src3third optional delta matrix added to the matrix product; it should have the same type as src1 and src2.
betaweight of src3.
dstoutput matrix; it has the proper size and the same type as input matrices.
flagsoperation flags (cv::GemmFlags)
See also
mulTransposed , transform

◆ gemm() [2/2]

static void OpenCVForUnity.CoreModule.Core.gemm ( Mat  src1,
Mat  src2,
double  alpha,
Mat  src3,
double  beta,
Mat  dst 
)
static

Performs generalized matrix multiplication.

The function cv::gemm performs generalized matrix multiplication similar to the gemm functions in BLAS level 3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to

\[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\]

In case of complex (two-channel) data, performed a complex matrix multiplication.

The function can be replaced with a matrix expression. For example, the above call can be replaced with:

dst = alpha*src1.t()*src2 + beta*src3.t();
Parameters
src1first multiplied input matrix that could be real(CV_32FC1, CV_64FC1) or complex(CV_32FC2, CV_64FC2).
src2second multiplied input matrix of the same type as src1.
alphaweight of the matrix product.
src3third optional delta matrix added to the matrix product; it should have the same type as src1 and src2.
betaweight of src3.
dstoutput matrix; it has the proper size and the same type as input matrices.
flagsoperation flags (cv::GemmFlags)
See also
mulTransposed , transform

◆ getBuildInformation()

static string OpenCVForUnity.CoreModule.Core.getBuildInformation ( )
static

Returns full configuration time cmake output.

Returned value is raw cmake output including version control system revision, compiler version, compiler flags, enabled modules and third party libraries, etc. Output format depends on target architecture.

◆ getCPUFeaturesLine()

static string OpenCVForUnity.CoreModule.Core.getCPUFeaturesLine ( )
static

Returns list of CPU features enabled during compilation.

Returned value is a string containing space separated list of CPU features with following markers:

  • no markers - baseline features
  • prefix * - features enabled in dispatcher
  • suffix ? - features enabled but not available in HW

Example: SSE SSE2 SSE3 *SSE4.1 *SSE4.2 *FP16 *AVX *AVX2 *AVX512-SKX?

◆ getCPUTickCount()

static long OpenCVForUnity.CoreModule.Core.getCPUTickCount ( )
static

Returns the number of CPU ticks.

The function returns the current number of CPU ticks on some architectures (such as x86, x64, PowerPC). On other platforms the function is equivalent to getTickCount. It can also be used for very accurate time measurements, as well as for RNG initialization. Note that in case of multi-CPU systems a thread, from which getCPUTickCount is called, can be suspended and resumed at another CPU with its own counter. So, theoretically (and practically) the subsequent calls to the function do not necessary return the monotonously increasing values. Also, since a modern CPU varies the CPU frequency depending on the load, the number of CPU clocks spent in some code cannot be directly converted to time units. Therefore, getTickCount is generally a preferable solution for measuring execution time.

◆ getHardwareFeatureName()

static string OpenCVForUnity.CoreModule.Core.getHardwareFeatureName ( int  feature)
static

Returns feature name by ID.

Returns empty string if feature is not defined

◆ getIppVersion()

static string OpenCVForUnity.CoreModule.Core.getIppVersion ( )
static

◆ getNumberOfCPUs()

static int OpenCVForUnity.CoreModule.Core.getNumberOfCPUs ( )
static

Returns the number of logical CPUs available for the process.

◆ getNumThreads()

static int OpenCVForUnity.CoreModule.Core.getNumThreads ( )
static

Returns the number of threads used by OpenCV for parallel regions.

Always returns 1 if OpenCV is built without threading support.

The exact meaning of return value depends on the threading framework used by OpenCV library:

  • TBB - The number of threads, that OpenCV will try to use for parallel regions. If there is any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns default number of threads used by TBB library.
  • OpenMP - An upper bound on the number of threads that could be used to form a new team.
  • Concurrency - The number of threads, that OpenCV will try to use for parallel regions.
  • GCD - Unsupported; returns the GCD thread pool limit (512) for compatibility.
  • C= - The number of threads, that OpenCV will try to use for parallel regions, if before called setNumThreads with threads > 0, otherwise returns the number of logical CPUs, available for the process.
    See also
    setNumThreads, getThreadNum

◆ getOptimalDFTSize()

static int OpenCVForUnity.CoreModule.Core.getOptimalDFTSize ( int  vecsize)
static

Returns the optimal DFT size for a given vector size.

DFT performance is not a monotonic function of a vector size. Therefore, when you calculate convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit larger array that can be transformed much faster than the original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5*5*3*2*2) are also processed quite efficiently.

The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize so that the DFT of a vector of size N can be processed efficiently. In the current implementation N = 2 ^p^ * 3 ^q^ * 5 ^r^ for some integer p, q, r.

The function returns a negative number if vecsize is too large (very close to INT_MAX ).

While the function cannot be used directly to estimate the optimal vector size for DCT transform (since the current DCT implementation supports only even-size vectors), it can be easily processed as getOptimalDFTSize((vecsize+1)/2)*2.

Parameters
vecsizevector size.
See also
dft , dct , idft , idct , mulSpectrums

◆ getThreadNum()

static int OpenCVForUnity.CoreModule.Core.getThreadNum ( )
static

Returns the index of the currently executed thread within the current parallel region. Always returns 0 if called outside of parallel region.

Deprecated:
Current implementation doesn't corresponding to this documentation.

The exact meaning of the return value depends on the threading framework used by OpenCV library:

  • TBB - Unsupported with current 4.1 TBB release. Maybe will be supported in future.
  • OpenMP - The thread number, within the current team, of the calling thread.
  • Concurrency - An ID for the virtual processor that the current context is executing on (0 for master thread and unique number for others, but not necessary 1,2,3,...).
  • GCD - System calling thread's ID. Never returns 0 inside parallel region.
  • C= - The index of the current parallel task.
    See also
    setNumThreads, getNumThreads

◆ getTickCount()

static long OpenCVForUnity.CoreModule.Core.getTickCount ( )
static

Returns the number of ticks.

The function returns the number of ticks after the certain event (for example, when the machine was turned on). It can be used to initialize RNG or to measure a function execution time by reading the tick count before and after the function call.

See also
getTickFrequency, TickMeter

◆ getTickFrequency()

static double OpenCVForUnity.CoreModule.Core.getTickFrequency ( )
static

Returns the number of ticks per second.

The function returns the number of ticks per second. That is, the following code computes the execution time in seconds:

double t = (double)getTickCount();
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();
See also
getTickCount, TickMeter

◆ getVersionMajor()

static int OpenCVForUnity.CoreModule.Core.getVersionMajor ( )
static

Returns major library version.

◆ getVersionMinor()

static int OpenCVForUnity.CoreModule.Core.getVersionMinor ( )
static

Returns minor library version.

◆ getVersionRevision()

static int OpenCVForUnity.CoreModule.Core.getVersionRevision ( )
static

Returns revision field of the library version.

◆ getVersionString()

static string OpenCVForUnity.CoreModule.Core.getVersionString ( )
static

Returns library version string.

For example "3.4.1-dev".

See also
getMajorVersion, getMinorVersion, getRevisionVersion

◆ hasNonZero()

static bool OpenCVForUnity.CoreModule.Core.hasNonZero ( Mat  src)
static

Checks for the presence of at least one non-zero array element.

The function returns whether there are non-zero elements in src

Parameters
srcsingle-channel array.
See also
mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix

◆ hconcat()

static void OpenCVForUnity.CoreModule.Core.hconcat ( List< Mat src,
Mat  dst 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

std::vector&lt;cv::Mat&gt; matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::hconcat( matrices, out );
//out:
//[1, 2, 3;
// 1, 2, 3;
// 1, 2, 3;
// 1, 2, 3]
Parameters
srcinput array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
dstoutput array. It has the same number of rows and depth as the src, and the sum of cols of the src. same depth.

◆ idct() [1/2]

static void OpenCVForUnity.CoreModule.Core.idct ( Mat  src,
Mat  dst,
int  flags 
)
static

Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.

idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).

Parameters
srcinput floating-point single-channel array.
dstoutput array of the same size and type as src.
flagsoperation flags.
See also
dct, dft, idft, getOptimalDFTSize

◆ idct() [2/2]

static void OpenCVForUnity.CoreModule.Core.idct ( Mat  src,
Mat  dst 
)
static

Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.

idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).

Parameters
srcinput floating-point single-channel array.
dstoutput array of the same size and type as src.
flagsoperation flags.
See also
dct, dft, idft, getOptimalDFTSize

◆ idft() [1/3]

static void OpenCVForUnity.CoreModule.Core.idft ( Mat  src,
Mat  dst,
int  flags,
int  nonzeroRows 
)
static

Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.

idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .

Note
None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of dft or idft explicitly to make these transforms mutually inverse.
See also
dft, dct, idct, mulSpectrums, getOptimalDFTSize
Parameters
srcinput floating-point real or complex array.
dstoutput array whose size and type depend on the flags.
flagsoperation flags (see dft and #DftFlags).
nonzeroRowsnumber of dst rows to process; the rest of the rows have undefined content (see the convolution sample in dft description.

◆ idft() [2/3]

static void OpenCVForUnity.CoreModule.Core.idft ( Mat  src,
Mat  dst,
int  flags 
)
static

Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.

idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .

Note
None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of dft or idft explicitly to make these transforms mutually inverse.
See also
dft, dct, idct, mulSpectrums, getOptimalDFTSize
Parameters
srcinput floating-point real or complex array.
dstoutput array whose size and type depend on the flags.
flagsoperation flags (see dft and #DftFlags).
nonzeroRowsnumber of dst rows to process; the rest of the rows have undefined content (see the convolution sample in dft description.

◆ idft() [3/3]

static void OpenCVForUnity.CoreModule.Core.idft ( Mat  src,
Mat  dst 
)
static

Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.

idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .

Note
None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of dft or idft explicitly to make these transforms mutually inverse.
See also
dft, dct, idct, mulSpectrums, getOptimalDFTSize
Parameters
srcinput floating-point real or complex array.
dstoutput array whose size and type depend on the flags.
flagsoperation flags (see dft and #DftFlags).
nonzeroRowsnumber of dst rows to process; the rest of the rows have undefined content (see the convolution sample in dft description.

◆ inRange()

static void OpenCVForUnity.CoreModule.Core.inRange ( Mat  src,
Scalar  lowerb,
Scalar  upperb,
Mat  dst 
)
static

Checks if array elements lie between the elements of two other arrays.

The function checks the range as follows:

  • For every element of a single-channel input array:

    \[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\]

  • For two-channel arrays:

    \[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\]

  • and so forth.

That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.

When the lower and/or upper boundary parameters are scalars, the indexes (I) at lowerb and upperb in the above formulas should be omitted.

Parameters
srcfirst input array.
lowerbinclusive lower boundary array or a scalar.
upperbinclusive upper boundary array or a scalar.
dstoutput array of the same size as src and CV_8U type.

◆ insertChannel()

static void OpenCVForUnity.CoreModule.Core.insertChannel ( Mat  src,
Mat  dst,
int  coi 
)
static

Inserts a single channel to dst (coi is 0-based index)

Parameters
srcinput array
dstoutput array
coiindex of channel for insertion
See also
mixChannels, merge

◆ invert() [1/2]

static double OpenCVForUnity.CoreModule.Core.invert ( Mat  src,
Mat  dst,
int  flags 
)
static

Finds the inverse or pseudo-inverse of a matrix.

The function cv::invert inverts the matrix src and stores the result in dst . When the matrix src is singular or non-square, the function calculates the pseudo-inverse matrix (the dst matrix) so that norm(src*dst - I) is minimal, where I is an identity matrix.

In case of the DECOMP_LU method, the function returns non-zero value if the inverse has been successfully calculated and 0 if src is singular.

In case of the DECOMP_SVD method, the function returns the inverse condition number of src (the ratio of the smallest singular value to the largest singular value) and 0 if src is singular. The SVD method calculates a pseudo-inverse matrix if src is singular.

Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in dst and returns non-zero. Otherwise, it returns 0.

Parameters
srcinput floating-point M x N matrix.
dstoutput matrix of N x M size and the same type as src.
flagsinversion method (cv::DecompTypes)
See also
solve, SVD

◆ invert() [2/2]

static double OpenCVForUnity.CoreModule.Core.invert ( Mat  src,
Mat  dst 
)
static

Finds the inverse or pseudo-inverse of a matrix.

The function cv::invert inverts the matrix src and stores the result in dst . When the matrix src is singular or non-square, the function calculates the pseudo-inverse matrix (the dst matrix) so that norm(src*dst - I) is minimal, where I is an identity matrix.

In case of the DECOMP_LU method, the function returns non-zero value if the inverse has been successfully calculated and 0 if src is singular.

In case of the DECOMP_SVD method, the function returns the inverse condition number of src (the ratio of the smallest singular value to the largest singular value) and 0 if src is singular. The SVD method calculates a pseudo-inverse matrix if src is singular.

Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in dst and returns non-zero. Otherwise, it returns 0.

Parameters
srcinput floating-point M x N matrix.
dstoutput matrix of N x M size and the same type as src.
flagsinversion method (cv::DecompTypes)
See also
solve, SVD

◆ kmeans() [1/2]

static double OpenCVForUnity.CoreModule.Core.kmeans ( Mat  data,
int  K,
Mat  bestLabels,
TermCriteria  criteria,
int  attempts,
int  flags,
Mat  centers 
)
static

Finds centers of clusters and groups input samples around the clusters.

The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters and groups the input samples around the clusters. As an output, \(\texttt{bestLabels}_i\) contains a 0-based cluster index for the sample stored in the \(i^{th}\) row of the samples matrix.

Note
  • (Python) An example on K-means clustering can be found at opencv_source_code/samples/python/kmeans.py
Parameters
dataData for clustering. An array of N-Dimensional points with float coordinates is needed. Examples of this array can be:
  • Mat points(count, 2, CV_32F);
  • Mat points(count, 1, CV_32FC2);
  • Mat points(1, count, CV_32FC2);
  • std::vector<cv::Point2f> points(sampleCount);
KNumber of clusters to split the set by.
bestLabelsInput/output integer array that stores the cluster indices for every sample.
criteriaThe algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
attemptsFlag to specify the number of times the algorithm is executed using different initial labellings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
flagsFlag that can take values of cv::KmeansFlags
centersOutput matrix of the cluster centers, one row per each cluster center.
Returns
The function returns the compactness measure that is computed as

\[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\]

after every attempt. The best (minimum) value is chosen and the corresponding labels and the compactness value are returned by the function. Basically, you can use only the core of the function, set the number of attempts to 1, initialize labels each time using a custom algorithm, pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best (most-compact) clustering.

◆ kmeans() [2/2]

static double OpenCVForUnity.CoreModule.Core.kmeans ( Mat  data,
int  K,
Mat  bestLabels,
TermCriteria  criteria,
int  attempts,
int  flags 
)
static

Finds centers of clusters and groups input samples around the clusters.

The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters and groups the input samples around the clusters. As an output, \(\texttt{bestLabels}_i\) contains a 0-based cluster index for the sample stored in the \(i^{th}\) row of the samples matrix.

Note
  • (Python) An example on K-means clustering can be found at opencv_source_code/samples/python/kmeans.py
Parameters
dataData for clustering. An array of N-Dimensional points with float coordinates is needed. Examples of this array can be:
  • Mat points(count, 2, CV_32F);
  • Mat points(count, 1, CV_32FC2);
  • Mat points(1, count, CV_32FC2);
  • std::vector<cv::Point2f> points(sampleCount);
KNumber of clusters to split the set by.
bestLabelsInput/output integer array that stores the cluster indices for every sample.
criteriaThe algorithm termination criteria, that is, the maximum number of iterations and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
attemptsFlag to specify the number of times the algorithm is executed using different initial labellings. The algorithm returns the labels that yield the best compactness (see the last function parameter).
flagsFlag that can take values of cv::KmeansFlags
centersOutput matrix of the cluster centers, one row per each cluster center.
Returns
The function returns the compactness measure that is computed as

\[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\]

after every attempt. The best (minimum) value is chosen and the corresponding labels and the compactness value are returned by the function. Basically, you can use only the core of the function, set the number of attempts to 1, initialize labels each time using a custom algorithm, pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best (most-compact) clustering.

◆ log()

static void OpenCVForUnity.CoreModule.Core.log ( Mat  src,
Mat  dst 
)
static

Calculates the natural logarithm of every array element.

The function cv::log calculates the natural logarithm of every element of the input array:

\[\texttt{dst} (I) = \log (\texttt{src}(I)) \]

Output on zero, negative and special (NaN, Inf) values is undefined.

Parameters
srcinput array.
dstoutput array of the same size and type as src .
See also
exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude

◆ LUT()

static void OpenCVForUnity.CoreModule.Core.LUT ( Mat  src,
Mat  lut,
Mat  dst 
)
static

Performs a look-up table transform of an array.

The function LUT fills the output array with values from the look-up table. Indices of the entries are taken from the input array. That is, the function processes each element of src as follows:

\[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\]

where

\[d = \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\]

Parameters
srcinput array of 8-bit elements.
lutlook-up table of 256 elements; in case of multi-channel input array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the input array.
dstoutput array of the same size and number of channels as src, and the same depth as lut.
See also
convertScaleAbs, Mat::convertTo

◆ magnitude()

static void OpenCVForUnity.CoreModule.Core.magnitude ( Mat  x,
Mat  y,
Mat  magnitude 
)
static

Calculates the magnitude of 2D vectors.

The function cv::magnitude calculates the magnitude of 2D vectors formed from the corresponding elements of x and y arrays:

\[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\]

Parameters
xfloating-point array of x-coordinates of the vectors.
yfloating-point array of y-coordinates of the vectors; it must have the same size as x.
magnitudeoutput array of the same size and type as x.
See also
cartToPolar, polarToCart, phase, sqrt

◆ Mahalanobis()

static double OpenCVForUnity.CoreModule.Core.Mahalanobis ( Mat  v1,
Mat  v2,
Mat  icovar 
)
static

Calculates the Mahalanobis distance between two vectors.

The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:

\[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\]

The covariance matrix may be calculated using the calcCovarMatrix function and then inverted using the invert function (preferably using the DECOMP_SVD method, as the most accurate).

Parameters
v1first 1D input vector.
v2second 1D input vector.
icovarinverse covariance matrix.

◆ max() [1/2]

static void OpenCVForUnity.CoreModule.Core.max ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates per-element maximum of two arrays or an array and a scalar.

The function cv::max calculates the per-element maximum of two arrays:

\[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\]

or array and a scalar:

\[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\]

Parameters
src1first input array.
src2second input array of the same size and type as src1 .
dstoutput array of the same size and type as src1.
See also
min, compare, inRange, minMaxLoc, MatrixExpressions

◆ max() [2/2]

static void OpenCVForUnity.CoreModule.Core.max ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ mean() [1/2]

static Scalar OpenCVForUnity.CoreModule.Core.mean ( Mat  src,
Mat  mask 
)
static

Calculates an average (mean) of array elements.

The function cv::mean calculates the mean value M of array elements, independently for each channel, and return it:

\[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\]

When all the mask elements are 0's, the function returns Scalar::all(0)

Parameters
srcinput array that should have from 1 to 4 channels so that the result can be stored in Scalar_ .
maskoptional operation mask.
See also
countNonZero, meanStdDev, norm, minMaxLoc

◆ mean() [2/2]

static Scalar OpenCVForUnity.CoreModule.Core.mean ( Mat  src)
static

Calculates an average (mean) of array elements.

The function cv::mean calculates the mean value M of array elements, independently for each channel, and return it:

\[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\]

When all the mask elements are 0's, the function returns Scalar::all(0)

Parameters
srcinput array that should have from 1 to 4 channels so that the result can be stored in Scalar_ .
maskoptional operation mask.
See also
countNonZero, meanStdDev, norm, minMaxLoc

◆ meanStdDev() [1/2]

static void OpenCVForUnity.CoreModule.Core.meanStdDev ( Mat  src,
MatOfDouble  mean,
MatOfDouble  stddev,
Mat  mask 
)
static

Calculates a mean and standard deviation of array elements.

The function cv::meanStdDev calculates the mean and the standard deviation M of array elements independently for each channel and returns it via the output parameters:

\[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\]

When all the mask elements are 0's, the function returns mean=stddev=Scalar::all(0).

Note
The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array M x N to the single-channel array M*N x mtx.channels() (only possible when the matrix is continuous) and then pass the matrix to calcCovarMatrix .
Parameters
srcinput array that should have from 1 to 4 channels so that the results can be stored in Scalar_ 's.
meanoutput parameter: calculated mean value.
stddevoutput parameter: calculated standard deviation.
maskoptional operation mask.
See also
countNonZero, mean, norm, minMaxLoc, calcCovarMatrix

◆ meanStdDev() [2/2]

static void OpenCVForUnity.CoreModule.Core.meanStdDev ( Mat  src,
MatOfDouble  mean,
MatOfDouble  stddev 
)
static

Calculates a mean and standard deviation of array elements.

The function cv::meanStdDev calculates the mean and the standard deviation M of array elements independently for each channel and returns it via the output parameters:

\[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\]

When all the mask elements are 0's, the function returns mean=stddev=Scalar::all(0).

Note
The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array M x N to the single-channel array M*N x mtx.channels() (only possible when the matrix is continuous) and then pass the matrix to calcCovarMatrix .
Parameters
srcinput array that should have from 1 to 4 channels so that the results can be stored in Scalar_ 's.
meanoutput parameter: calculated mean value.
stddevoutput parameter: calculated standard deviation.
maskoptional operation mask.
See also
countNonZero, mean, norm, minMaxLoc, calcCovarMatrix

◆ merge()

static void OpenCVForUnity.CoreModule.Core.merge ( List< Mat mv,
Mat  dst 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
mvinput vector of matrices to be merged; all the matrices in mv must have the same size and the same depth.
dstoutput array of the same size and the same depth as mv[0]; The number of channels will be the total number of channels in the matrix array.

◆ min() [1/2]

static void OpenCVForUnity.CoreModule.Core.min ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates per-element minimum of two arrays or an array and a scalar.

The function cv::min calculates the per-element minimum of two arrays:

\[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\]

or array and a scalar:

\[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\]

Parameters
src1first input array.
src2second input array of the same size and type as src1.
dstoutput array of the same size and type as src1.
See also
max, compare, inRange, minMaxLoc

◆ min() [2/2]

static void OpenCVForUnity.CoreModule.Core.min ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ minMaxLoc() [1/2]

static MinMaxLocResult OpenCVForUnity.CoreModule.Core.minMaxLoc ( Mat  src,
Mat  mask 
)
static

◆ minMaxLoc() [2/2]

static MinMaxLocResult OpenCVForUnity.CoreModule.Core.minMaxLoc ( Mat  src)
static

◆ mixChannels()

static void OpenCVForUnity.CoreModule.Core.mixChannels ( List< Mat src,
List< Mat dst,
MatOfInt  fromTo 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
srcinput array or vector of matrices; all of the matrices must have the same size and the same depth.
dstoutput array or vector of matrices; all the matrices must be allocated; their size and depth must be the same as in src[0].
fromToarray of index pairs specifying which channels are copied and where; fromTo[k*2] is a 0-based index of the input channel in src, fromTo[k*2+1] is an index of the output channel in dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to src[0].channels()-1, the second input image channels are indexed from src[0].channels() to src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image channels; as a special case, when fromTo[k*2] is negative, the corresponding output channel is filled with zero .

◆ mulSpectrums() [1/2]

static void OpenCVForUnity.CoreModule.Core.mulSpectrums ( Mat  a,
Mat  b,
Mat  c,
int  flags,
bool  conjB 
)
static

Performs the per-element multiplication of two Fourier spectrums.

The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.

The function, together with dft and idft , may be used to calculate convolution (pass conjB=false ) or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see dft for details).

Parameters
afirst input array.
bsecond input array of the same size and type as src1 .
coutput array of the same size and type as src1 .
flagsoperation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.
conjBoptional flag that conjugates the second input array before the multiplication (true) or not (false).

◆ mulSpectrums() [2/2]

static void OpenCVForUnity.CoreModule.Core.mulSpectrums ( Mat  a,
Mat  b,
Mat  c,
int  flags 
)
static

Performs the per-element multiplication of two Fourier spectrums.

The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.

The function, together with dft and idft , may be used to calculate convolution (pass conjB=false ) or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see dft for details).

Parameters
afirst input array.
bsecond input array of the same size and type as src1 .
coutput array of the same size and type as src1 .
flagsoperation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a 0 as value.
conjBoptional flag that conjugates the second input array before the multiplication (true) or not (false).

◆ multiply() [1/6]

static void OpenCVForUnity.CoreModule.Core.multiply ( Mat  src1,
Mat  src2,
Mat  dst,
double  scale,
int  dtype 
)
static

Calculates the per-element scaled product of two arrays.

The function multiply calculates the per-element product of two arrays:

\[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\]

There is also a MatrixExpressions -friendly variant of the first function. See Mat::mul .

For a not-per-element matrix product, see gemm .

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. multiply(src,X) means multiply(src,(X,X,X,X)). multiply(src,(X,)) means multiply(src,(X,0,0,0)).
Parameters
src1first input array.
src2second input array of the same size and the same type as src1.
dstoutput array of the same size and type as src1.
scaleoptional scale factor.
dtypeoptional depth of the output array
See also
add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare, Mat::convertTo

◆ multiply() [2/6]

static void OpenCVForUnity.CoreModule.Core.multiply ( Mat  src1,
Mat  src2,
Mat  dst,
double  scale 
)
static

Calculates the per-element scaled product of two arrays.

The function multiply calculates the per-element product of two arrays:

\[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\]

There is also a MatrixExpressions -friendly variant of the first function. See Mat::mul .

For a not-per-element matrix product, see gemm .

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. multiply(src,X) means multiply(src,(X,X,X,X)). multiply(src,(X,)) means multiply(src,(X,0,0,0)).
Parameters
src1first input array.
src2second input array of the same size and the same type as src1.
dstoutput array of the same size and type as src1.
scaleoptional scale factor.
dtypeoptional depth of the output array
See also
add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare, Mat::convertTo

◆ multiply() [3/6]

static void OpenCVForUnity.CoreModule.Core.multiply ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates the per-element scaled product of two arrays.

The function multiply calculates the per-element product of two arrays:

\[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\]

There is also a MatrixExpressions -friendly variant of the first function. See Mat::mul .

For a not-per-element matrix product, see gemm .

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. multiply(src,X) means multiply(src,(X,X,X,X)). multiply(src,(X,)) means multiply(src,(X,0,0,0)).
Parameters
src1first input array.
src2second input array of the same size and the same type as src1.
dstoutput array of the same size and type as src1.
scaleoptional scale factor.
dtypeoptional depth of the output array
See also
add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare, Mat::convertTo

◆ multiply() [4/6]

static void OpenCVForUnity.CoreModule.Core.multiply ( Mat  src1,
Scalar  src2,
Mat  dst,
double  scale,
int  dtype 
)
static

◆ multiply() [5/6]

static void OpenCVForUnity.CoreModule.Core.multiply ( Mat  src1,
Scalar  src2,
Mat  dst,
double  scale 
)
static

◆ multiply() [6/6]

static void OpenCVForUnity.CoreModule.Core.multiply ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ mulTransposed() [1/4]

static void OpenCVForUnity.CoreModule.Core.mulTransposed ( Mat  src,
Mat  dst,
bool  aTa,
Mat  delta,
double  scale,
int  dtype 
)
static

Calculates the product of a matrix and its transposition.

The function cv::mulTransposed calculates the product of src and its transposition:

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\]

if aTa=true , and

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\]

otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product A*B when B=A'

Parameters
srcinput single-channel matrix. Note that unlike gemm, the function can multiply not only floating-point matrices.
dstoutput square matrix.
aTaFlag specifying the multiplication ordering. See the description below.
deltaOptional delta matrix subtracted from src before the multiplication. When the matrix is empty ( delta=noArray() ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as src , it is simply subtracted. Otherwise, it is "repeated" (see repeat ) to cover the full src and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the dtype parameter description below.
scaleOptional scale factor for the matrix product.
dtypeOptional type of the output matrix. When it is negative, the output matrix will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
See also
calcCovarMatrix, gemm, repeat, reduce

◆ mulTransposed() [2/4]

static void OpenCVForUnity.CoreModule.Core.mulTransposed ( Mat  src,
Mat  dst,
bool  aTa,
Mat  delta,
double  scale 
)
static

Calculates the product of a matrix and its transposition.

The function cv::mulTransposed calculates the product of src and its transposition:

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\]

if aTa=true , and

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\]

otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product A*B when B=A'

Parameters
srcinput single-channel matrix. Note that unlike gemm, the function can multiply not only floating-point matrices.
dstoutput square matrix.
aTaFlag specifying the multiplication ordering. See the description below.
deltaOptional delta matrix subtracted from src before the multiplication. When the matrix is empty ( delta=noArray() ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as src , it is simply subtracted. Otherwise, it is "repeated" (see repeat ) to cover the full src and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the dtype parameter description below.
scaleOptional scale factor for the matrix product.
dtypeOptional type of the output matrix. When it is negative, the output matrix will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
See also
calcCovarMatrix, gemm, repeat, reduce

◆ mulTransposed() [3/4]

static void OpenCVForUnity.CoreModule.Core.mulTransposed ( Mat  src,
Mat  dst,
bool  aTa,
Mat  delta 
)
static

Calculates the product of a matrix and its transposition.

The function cv::mulTransposed calculates the product of src and its transposition:

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\]

if aTa=true , and

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\]

otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product A*B when B=A'

Parameters
srcinput single-channel matrix. Note that unlike gemm, the function can multiply not only floating-point matrices.
dstoutput square matrix.
aTaFlag specifying the multiplication ordering. See the description below.
deltaOptional delta matrix subtracted from src before the multiplication. When the matrix is empty ( delta=noArray() ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as src , it is simply subtracted. Otherwise, it is "repeated" (see repeat ) to cover the full src and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the dtype parameter description below.
scaleOptional scale factor for the matrix product.
dtypeOptional type of the output matrix. When it is negative, the output matrix will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
See also
calcCovarMatrix, gemm, repeat, reduce

◆ mulTransposed() [4/4]

static void OpenCVForUnity.CoreModule.Core.mulTransposed ( Mat  src,
Mat  dst,
bool  aTa 
)
static

Calculates the product of a matrix and its transposition.

The function cv::mulTransposed calculates the product of src and its transposition:

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\]

if aTa=true , and

\[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\]

otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product A*B when B=A'

Parameters
srcinput single-channel matrix. Note that unlike gemm, the function can multiply not only floating-point matrices.
dstoutput square matrix.
aTaFlag specifying the multiplication ordering. See the description below.
deltaOptional delta matrix subtracted from src before the multiplication. When the matrix is empty ( delta=noArray() ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as src , it is simply subtracted. Otherwise, it is "repeated" (see repeat ) to cover the full src and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the dtype parameter description below.
scaleOptional scale factor for the matrix product.
dtypeOptional type of the output matrix. When it is negative, the output matrix will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
See also
calcCovarMatrix, gemm, repeat, reduce

◆ norm() [1/6]

static double OpenCVForUnity.CoreModule.Core.norm ( Mat  src1,
int  normType,
Mat  mask 
)
static

Calculates the absolute norm of an array.

This version of norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.

As example for one array consider the function \(r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\). The \( L_{1}, L_{2} \) and \( L_{\infty} \) norm for the sample value \(r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\) is calculated as follows

\begin{align*} \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\ \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\ \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2 \end{align*}

and for \(r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\) the calculation is

\begin{align*} \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\ \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\ \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5. \end{align*}

The following graphic shows all values for the three norm functions \(\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\) and \(\| r(x) \|_{L_\infty}\). It is notable that the \( L_{1} \) norm forms the upper and the \( L_{\infty} \) norm forms the lower border for the example function \( r(x) \).

NormTypes_OneArray_1-2-INF.png
Graphs for the different norm functions from the above example

When the mask parameter is specified and it is not empty, the norm is

If normType is not specified, NORM_L2 is used. calculated only over the region specified by the mask.

Multi-channel input arrays are treated as single-channel arrays, that is, the results for all channels are combined.

Hamming norms can only be calculated with CV_8U depth arrays.

Parameters
src1first input array.
normTypetype of the norm (see #NormTypes).
maskoptional operation mask; it must have the same size as src1 and CV_8UC1 type.

◆ norm() [2/6]

static double OpenCVForUnity.CoreModule.Core.norm ( Mat  src1,
int  normType 
)
static

Calculates the absolute norm of an array.

This version of norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.

As example for one array consider the function \(r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\). The \( L_{1}, L_{2} \) and \( L_{\infty} \) norm for the sample value \(r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\) is calculated as follows

\begin{align*} \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\ \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\ \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2 \end{align*}

and for \(r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\) the calculation is

\begin{align*} \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\ \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\ \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5. \end{align*}

The following graphic shows all values for the three norm functions \(\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\) and \(\| r(x) \|_{L_\infty}\). It is notable that the \( L_{1} \) norm forms the upper and the \( L_{\infty} \) norm forms the lower border for the example function \( r(x) \).

NormTypes_OneArray_1-2-INF.png
Graphs for the different norm functions from the above example

When the mask parameter is specified and it is not empty, the norm is

If normType is not specified, NORM_L2 is used. calculated only over the region specified by the mask.

Multi-channel input arrays are treated as single-channel arrays, that is, the results for all channels are combined.

Hamming norms can only be calculated with CV_8U depth arrays.

Parameters
src1first input array.
normTypetype of the norm (see #NormTypes).
maskoptional operation mask; it must have the same size as src1 and CV_8UC1 type.

◆ norm() [3/6]

static double OpenCVForUnity.CoreModule.Core.norm ( Mat  src1)
static

Calculates the absolute norm of an array.

This version of norm calculates the absolute norm of src1. The type of norm to calculate is specified using #NormTypes.

As example for one array consider the function \(r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\). The \( L_{1}, L_{2} \) and \( L_{\infty} \) norm for the sample value \(r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\) is calculated as follows

\begin{align*} \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\ \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\ \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2 \end{align*}

and for \(r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\) the calculation is

\begin{align*} \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\ \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\ \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5. \end{align*}

The following graphic shows all values for the three norm functions \(\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\) and \(\| r(x) \|_{L_\infty}\). It is notable that the \( L_{1} \) norm forms the upper and the \( L_{\infty} \) norm forms the lower border for the example function \( r(x) \).

NormTypes_OneArray_1-2-INF.png
Graphs for the different norm functions from the above example

When the mask parameter is specified and it is not empty, the norm is

If normType is not specified, NORM_L2 is used. calculated only over the region specified by the mask.

Multi-channel input arrays are treated as single-channel arrays, that is, the results for all channels are combined.

Hamming norms can only be calculated with CV_8U depth arrays.

Parameters
src1first input array.
normTypetype of the norm (see #NormTypes).
maskoptional operation mask; it must have the same size as src1 and CV_8UC1 type.

◆ norm() [4/6]

static double OpenCVForUnity.CoreModule.Core.norm ( Mat  src1,
Mat  src2,
int  normType,
Mat  mask 
)
static

Calculates an absolute difference norm or a relative difference norm.

This version of cv::norm calculates the absolute difference norm or the relative difference norm of arrays src1 and src2. The type of norm to calculate is specified using #NormTypes.

Parameters
src1first input array.
src2second input array of the same size and the same type as src1.
normTypetype of the norm (see #NormTypes).
maskoptional operation mask; it must have the same size as src1 and CV_8UC1 type.

◆ norm() [5/6]

static double OpenCVForUnity.CoreModule.Core.norm ( Mat  src1,
Mat  src2,
int  normType 
)
static

Calculates an absolute difference norm or a relative difference norm.

This version of cv::norm calculates the absolute difference norm or the relative difference norm of arrays src1 and src2. The type of norm to calculate is specified using #NormTypes.

Parameters
src1first input array.
src2second input array of the same size and the same type as src1.
normTypetype of the norm (see #NormTypes).
maskoptional operation mask; it must have the same size as src1 and CV_8UC1 type.

◆ norm() [6/6]

static double OpenCVForUnity.CoreModule.Core.norm ( Mat  src1,
Mat  src2 
)
static

Calculates an absolute difference norm or a relative difference norm.

This version of cv::norm calculates the absolute difference norm or the relative difference norm of arrays src1 and src2. The type of norm to calculate is specified using #NormTypes.

Parameters
src1first input array.
src2second input array of the same size and the same type as src1.
normTypetype of the norm (see #NormTypes).
maskoptional operation mask; it must have the same size as src1 and CV_8UC1 type.

◆ normalize() [1/6]

static void OpenCVForUnity.CoreModule.Core.normalize ( Mat  src,
Mat  dst,
double  alpha,
double  beta,
int  norm_type,
int  dtype,
Mat  mask 
)
static

Normalizes the norm or value range of an array.

The function cv::normalize normalizes scale and shift the input array elements so that

\[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\]

(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

\[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\]

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and Mat::convertTo.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

Possible usage with some positive example data:

vector&lt;double&gt; positiveData = { 2.0, 8.0, 10.0 };
vector&lt;double&gt; normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
Parameters
srcinput array.
dstoutput array of the same size as src .
alphanorm value to normalize to or the lower range boundary in case of the range normalization.
betaupper range boundary in case of the range normalization; it is not used for the norm normalization.
norm_typenormalization type (see cv::NormTypes).
dtypewhen negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).
maskoptional operation mask.
See also
norm, Mat::convertTo, SparseMat::convertTo

◆ normalize() [2/6]

static void OpenCVForUnity.CoreModule.Core.normalize ( Mat  src,
Mat  dst,
double  alpha,
double  beta,
int  norm_type,
int  dtype 
)
static

Normalizes the norm or value range of an array.

The function cv::normalize normalizes scale and shift the input array elements so that

\[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\]

(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

\[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\]

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and Mat::convertTo.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

Possible usage with some positive example data:

vector&lt;double&gt; positiveData = { 2.0, 8.0, 10.0 };
vector&lt;double&gt; normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
Parameters
srcinput array.
dstoutput array of the same size as src .
alphanorm value to normalize to or the lower range boundary in case of the range normalization.
betaupper range boundary in case of the range normalization; it is not used for the norm normalization.
norm_typenormalization type (see cv::NormTypes).
dtypewhen negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).
maskoptional operation mask.
See also
norm, Mat::convertTo, SparseMat::convertTo

◆ normalize() [3/6]

static void OpenCVForUnity.CoreModule.Core.normalize ( Mat  src,
Mat  dst,
double  alpha,
double  beta,
int  norm_type 
)
static

Normalizes the norm or value range of an array.

The function cv::normalize normalizes scale and shift the input array elements so that

\[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\]

(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

\[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\]

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and Mat::convertTo.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

Possible usage with some positive example data:

vector&lt;double&gt; positiveData = { 2.0, 8.0, 10.0 };
vector&lt;double&gt; normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
Parameters
srcinput array.
dstoutput array of the same size as src .
alphanorm value to normalize to or the lower range boundary in case of the range normalization.
betaupper range boundary in case of the range normalization; it is not used for the norm normalization.
norm_typenormalization type (see cv::NormTypes).
dtypewhen negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).
maskoptional operation mask.
See also
norm, Mat::convertTo, SparseMat::convertTo

◆ normalize() [4/6]

static void OpenCVForUnity.CoreModule.Core.normalize ( Mat  src,
Mat  dst,
double  alpha,
double  beta 
)
static

Normalizes the norm or value range of an array.

The function cv::normalize normalizes scale and shift the input array elements so that

\[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\]

(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

\[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\]

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and Mat::convertTo.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

Possible usage with some positive example data:

vector&lt;double&gt; positiveData = { 2.0, 8.0, 10.0 };
vector&lt;double&gt; normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
Parameters
srcinput array.
dstoutput array of the same size as src .
alphanorm value to normalize to or the lower range boundary in case of the range normalization.
betaupper range boundary in case of the range normalization; it is not used for the norm normalization.
norm_typenormalization type (see cv::NormTypes).
dtypewhen negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).
maskoptional operation mask.
See also
norm, Mat::convertTo, SparseMat::convertTo

◆ normalize() [5/6]

static void OpenCVForUnity.CoreModule.Core.normalize ( Mat  src,
Mat  dst,
double  alpha 
)
static

Normalizes the norm or value range of an array.

The function cv::normalize normalizes scale and shift the input array elements so that

\[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\]

(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

\[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\]

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and Mat::convertTo.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

Possible usage with some positive example data:

vector&lt;double&gt; positiveData = { 2.0, 8.0, 10.0 };
vector&lt;double&gt; normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
Parameters
srcinput array.
dstoutput array of the same size as src .
alphanorm value to normalize to or the lower range boundary in case of the range normalization.
betaupper range boundary in case of the range normalization; it is not used for the norm normalization.
norm_typenormalization type (see cv::NormTypes).
dtypewhen negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).
maskoptional operation mask.
See also
norm, Mat::convertTo, SparseMat::convertTo

◆ normalize() [6/6]

static void OpenCVForUnity.CoreModule.Core.normalize ( Mat  src,
Mat  dst 
)
static

Normalizes the norm or value range of an array.

The function cv::normalize normalizes scale and shift the input array elements so that

\[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\]

(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that

\[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\]

when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use norm and Mat::convertTo.

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.

Possible usage with some positive example data:

vector&lt;double&gt; positiveData = { 2.0, 8.0, 10.0 };
vector&lt;double&gt; normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
// Norm to probability (total count)
// sum(numbers) = 20.0
// 2.0 0.1 (2.0/20.0)
// 8.0 0.4 (8.0/20.0)
// 10.0 0.5 (10.0/20.0)
normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
// Norm to unit vector: ||positiveData|| = 1.0
// 2.0 0.15
// 8.0 0.62
// 10.0 0.77
normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
// Norm to max element
// 2.0 0.2 (2.0/10.0)
// 8.0 0.8 (8.0/10.0)
// 10.0 1.0 (10.0/10.0)
normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
// Norm to range [0.0;1.0]
// 2.0 0.0 (shift to left border)
// 8.0 0.75 (6.0/8.0)
// 10.0 1.0 (shift to right border)
normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
Parameters
srcinput array.
dstoutput array of the same size as src .
alphanorm value to normalize to or the lower range boundary in case of the range normalization.
betaupper range boundary in case of the range normalization; it is not used for the norm normalization.
norm_typenormalization type (see cv::NormTypes).
dtypewhen negative, the output array has the same type as src; otherwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH(dtype).
maskoptional operation mask.
See also
norm, Mat::convertTo, SparseMat::convertTo

◆ patchNaNs() [1/2]

static void OpenCVForUnity.CoreModule.Core.patchNaNs ( Mat  a,
double  val 
)
static

Replaces NaNs by given number.

Parameters
ainput/output matrix (CV_32F type).
valvalue to convert the NaNs

◆ patchNaNs() [2/2]

static void OpenCVForUnity.CoreModule.Core.patchNaNs ( Mat  a)
static

Replaces NaNs by given number.

Parameters
ainput/output matrix (CV_32F type).
valvalue to convert the NaNs

◆ PCABackProject()

static void OpenCVForUnity.CoreModule.Core.PCABackProject ( Mat  data,
Mat  mean,
Mat  eigenvectors,
Mat  result 
)
static

wrap PCA::backProject

◆ PCACompute() [1/3]

static void OpenCVForUnity.CoreModule.Core.PCACompute ( Mat  data,
Mat  mean,
Mat  eigenvectors,
int  maxComponents 
)
static

wrap PCA::operator()

◆ PCACompute() [2/3]

static void OpenCVForUnity.CoreModule.Core.PCACompute ( Mat  data,
Mat  mean,
Mat  eigenvectors 
)
static

wrap PCA::operator()

◆ PCACompute() [3/3]

static void OpenCVForUnity.CoreModule.Core.PCACompute ( Mat  data,
Mat  mean,
Mat  eigenvectors,
double  retainedVariance 
)
static

wrap PCA::operator()

◆ PCACompute2() [1/3]

static void OpenCVForUnity.CoreModule.Core.PCACompute2 ( Mat  data,
Mat  mean,
Mat  eigenvectors,
Mat  eigenvalues,
int  maxComponents 
)
static

wrap PCA::operator() and add eigenvalues output parameter

◆ PCACompute2() [2/3]

static void OpenCVForUnity.CoreModule.Core.PCACompute2 ( Mat  data,
Mat  mean,
Mat  eigenvectors,
Mat  eigenvalues 
)
static

wrap PCA::operator() and add eigenvalues output parameter

◆ PCACompute2() [3/3]

static void OpenCVForUnity.CoreModule.Core.PCACompute2 ( Mat  data,
Mat  mean,
Mat  eigenvectors,
Mat  eigenvalues,
double  retainedVariance 
)
static

wrap PCA::operator() and add eigenvalues output parameter

◆ PCAProject()

static void OpenCVForUnity.CoreModule.Core.PCAProject ( Mat  data,
Mat  mean,
Mat  eigenvectors,
Mat  result 
)
static

wrap PCA::project

◆ perspectiveTransform()

static void OpenCVForUnity.CoreModule.Core.perspectiveTransform ( Mat  src,
Mat  dst,
Mat  m 
)
static

Performs the perspective matrix transformation of vectors.

The function cv::perspectiveTransform transforms every element of src by treating it as a 2D or 3D vector, in the following way:

\[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\]

where

\[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\]

and

\[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\]

Here a 3D vector transformation is shown. In case of a 2D vector transformation, the z component is omitted.

Note
The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image using perspective transformation, use warpPerspective . If you have an inverse problem, that is, you want to compute the most probable perspective transformation out of several pairs of corresponding points, you can use getPerspectiveTransform or findHomography .
Parameters
srcinput two-channel or three-channel floating-point array; each element is a 2D/3D vector to be transformed.
dstoutput array of the same size and type as src.
m3x3 or 4x4 floating-point transformation matrix.
See also
transform, warpPerspective, getPerspectiveTransform, findHomography

◆ phase() [1/2]

static void OpenCVForUnity.CoreModule.Core.phase ( Mat  x,
Mat  y,
Mat  angle,
bool  angleInDegrees 
)
static

Calculates the rotation angle of 2D vectors.

The function cv::phase calculates the rotation angle of each 2D vector that is formed from the corresponding elements of x and y :

\[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\]

The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 , the corresponding angle(I) is set to 0.

Parameters
xinput floating-point array of x-coordinates of 2D vectors.
yinput array of y-coordinates of 2D vectors; it must have the same size and the same type as x.
angleoutput array of vector angles; it has the same size and same type as x .
angleInDegreeswhen true, the function calculates the angle in degrees, otherwise, they are measured in radians.

◆ phase() [2/2]

static void OpenCVForUnity.CoreModule.Core.phase ( Mat  x,
Mat  y,
Mat  angle 
)
static

Calculates the rotation angle of 2D vectors.

The function cv::phase calculates the rotation angle of each 2D vector that is formed from the corresponding elements of x and y :

\[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\]

The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 , the corresponding angle(I) is set to 0.

Parameters
xinput floating-point array of x-coordinates of 2D vectors.
yinput array of y-coordinates of 2D vectors; it must have the same size and the same type as x.
angleoutput array of vector angles; it has the same size and same type as x .
angleInDegreeswhen true, the function calculates the angle in degrees, otherwise, they are measured in radians.

◆ polarToCart() [1/2]

static void OpenCVForUnity.CoreModule.Core.polarToCart ( Mat  magnitude,
Mat  angle,
Mat  x,
Mat  y,
bool  angleInDegrees 
)
static

Calculates x and y coordinates of 2D vectors from their magnitude and angle.

The function cv::polarToCart calculates the Cartesian coordinates of each 2D vector represented by the corresponding elements of magnitude and angle:

\[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\]

The relative accuracy of the estimated coordinates is about 1e-6.

Parameters
magnitudeinput floating-point array of magnitudes of 2D vectors; it can be an empty matrix (=Mat()), in this case, the function assumes that all the magnitudes are =1; if it is not empty, it must have the same size and type as angle.
angleinput floating-point array of angles of 2D vectors.
xoutput array of x-coordinates of 2D vectors; it has the same size and type as angle.
youtput array of y-coordinates of 2D vectors; it has the same size and type as angle.
angleInDegreeswhen true, the input angles are measured in degrees, otherwise, they are measured in radians.
See also
cartToPolar, magnitude, phase, exp, log, pow, sqrt

◆ polarToCart() [2/2]

static void OpenCVForUnity.CoreModule.Core.polarToCart ( Mat  magnitude,
Mat  angle,
Mat  x,
Mat  y 
)
static

Calculates x and y coordinates of 2D vectors from their magnitude and angle.

The function cv::polarToCart calculates the Cartesian coordinates of each 2D vector represented by the corresponding elements of magnitude and angle:

\[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\]

The relative accuracy of the estimated coordinates is about 1e-6.

Parameters
magnitudeinput floating-point array of magnitudes of 2D vectors; it can be an empty matrix (=Mat()), in this case, the function assumes that all the magnitudes are =1; if it is not empty, it must have the same size and type as angle.
angleinput floating-point array of angles of 2D vectors.
xoutput array of x-coordinates of 2D vectors; it has the same size and type as angle.
youtput array of y-coordinates of 2D vectors; it has the same size and type as angle.
angleInDegreeswhen true, the input angles are measured in degrees, otherwise, they are measured in radians.
See also
cartToPolar, magnitude, phase, exp, log, pow, sqrt

◆ pow()

static void OpenCVForUnity.CoreModule.Core.pow ( Mat  src,
double  power,
Mat  dst 
)
static

Raises every array element to a power.

The function cv::pow raises every element of the input array to power :

\[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\]

So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to get true values for negative values using some extra operations. In the example below, computing the 5th root of array src shows:

Mat mask = src &lt; 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);

For some values of power, such as integer values, 0.5 and -0.5, specialized faster algorithms are used.

Special values (NaN, Inf) are not handled.

Parameters
srcinput array.
powerexponent of power.
dstoutput array of the same size and type as src.
See also
sqrt, exp, log, cartToPolar, polarToCart

◆ PSNR() [1/2]

static double OpenCVForUnity.CoreModule.Core.PSNR ( Mat  src1,
Mat  src2,
double  R 
)
static

Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.

This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB), between two input arrays src1 and src2. The arrays must have the same type.

The PSNR is calculated as follows:

\[ \texttt{PSNR} = 10 \cdot \log_{10}{\left( \frac{R^2}{MSE} \right) } \]

where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data) and MSE is the mean squared error between the two arrays.

Parameters
src1first input array.
src2second input array of the same size as src1.
Rthe maximum pixel value (255 by default)

◆ PSNR() [2/2]

static double OpenCVForUnity.CoreModule.Core.PSNR ( Mat  src1,
Mat  src2 
)
static

Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.

This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB), between two input arrays src1 and src2. The arrays must have the same type.

The PSNR is calculated as follows:

\[ \texttt{PSNR} = 10 \cdot \log_{10}{\left( \frac{R^2}{MSE} \right) } \]

where R is the maximum integer value of depth (e.g. 255 in the case of CV_8U data) and MSE is the mean squared error between the two arrays.

Parameters
src1first input array.
src2second input array of the same size as src1.
Rthe maximum pixel value (255 by default)

◆ randn()

static void OpenCVForUnity.CoreModule.Core.randn ( Mat  dst,
double  mean,
double  stddev 
)
static

Fills the array with normally distributed random numbers.

The function cv::randn fills the matrix dst with normally distributed random numbers with the specified mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the output array data type.

Parameters
dstoutput array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
meanmean value (expectation) of the generated random numbers.
stddevstandard deviation of the generated random numbers; it can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix.
See also
RNG, randu

◆ randShuffle() [1/2]

static void OpenCVForUnity.CoreModule.Core.randShuffle ( Mat  dst,
double  iterFactor 
)
static

Shuffles the array elements randomly.

The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be dst.rows*dst.cols*iterFactor .

Parameters
dstinput/output numerical 1D array.
iterFactorscale factor that determines the number of random swap operations (see the details below).
rngoptional random number generator used for shuffling; if it is zero, theRNG () is used instead.
See also
RNG, sort

◆ randShuffle() [2/2]

static void OpenCVForUnity.CoreModule.Core.randShuffle ( Mat  dst)
static

Shuffles the array elements randomly.

The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be dst.rows*dst.cols*iterFactor .

Parameters
dstinput/output numerical 1D array.
iterFactorscale factor that determines the number of random swap operations (see the details below).
rngoptional random number generator used for shuffling; if it is zero, theRNG () is used instead.
See also
RNG, sort

◆ randu()

static void OpenCVForUnity.CoreModule.Core.randu ( Mat  dst,
double  low,
double  high 
)
static

Generates a single uniformly-distributed random number or an array of random numbers.

Non-template variant of the function fills the matrix dst with uniformly-distributed random numbers from the specified range:

\[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\]

Parameters
dstoutput array of random numbers; the array must be pre-allocated.
lowinclusive lower boundary of the generated random numbers.
highexclusive upper boundary of the generated random numbers.
See also
RNG, randn, theRNG

◆ reduce() [1/2]

static void OpenCVForUnity.CoreModule.Core.reduce ( Mat  src,
Mat  dst,
int  dim,
int  rtype,
int  dtype 
)
static

Reduces a matrix to a vector.

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one. In case of REDUCE_SUM, REDUCE_SUM2 and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.

The following code demonstrates its usage for a single channel matrix.

And the following code demonstrates its usage for a two-channel matrix.

Parameters
srcinput 2D matrix.
dstoutput vector. Its size and type is defined by dim and dtype parameters.
dimdimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
rtypereduction operation that could be one of #ReduceTypes
dtypewhen negative, the output vector will have the same type as the input matrix, otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
See also
repeat, reduceArgMin, reduceArgMax

◆ reduce() [2/2]

static void OpenCVForUnity.CoreModule.Core.reduce ( Mat  src,
Mat  dst,
int  dim,
int  rtype 
)
static

Reduces a matrix to a vector.

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one. In case of REDUCE_SUM, REDUCE_SUM2 and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.

The following code demonstrates its usage for a single channel matrix.

And the following code demonstrates its usage for a two-channel matrix.

Parameters
srcinput 2D matrix.
dstoutput vector. Its size and type is defined by dim and dtype parameters.
dimdimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
rtypereduction operation that could be one of #ReduceTypes
dtypewhen negative, the output vector will have the same type as the input matrix, otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
See also
repeat, reduceArgMin, reduceArgMax

◆ reduceArgMax() [1/2]

static void OpenCVForUnity.CoreModule.Core.reduceArgMax ( Mat  src,
Mat  dst,
int  axis,
bool  lastIndex 
)
static

Finds indices of max elements along provided axis.

Note
  • If input or output array is not continuous, this function will create an internal copy.
  • NaN handling is left unspecified, see patchNaNs().
  • The returned index is always in bounds of input matrix.
Parameters
srcinput single-channel array.
dstoutput array of type CV_32SC1 with the same dimensionality as src, except for axis being reduced - it should be set to 1.
lastIndexwhether to get the index of first or last occurrence of max.
axisaxis to reduce along.
See also
reduceArgMin, minMaxLoc, min, max, compare, reduce

◆ reduceArgMax() [2/2]

static void OpenCVForUnity.CoreModule.Core.reduceArgMax ( Mat  src,
Mat  dst,
int  axis 
)
static

Finds indices of max elements along provided axis.

Note
  • If input or output array is not continuous, this function will create an internal copy.
  • NaN handling is left unspecified, see patchNaNs().
  • The returned index is always in bounds of input matrix.
Parameters
srcinput single-channel array.
dstoutput array of type CV_32SC1 with the same dimensionality as src, except for axis being reduced - it should be set to 1.
lastIndexwhether to get the index of first or last occurrence of max.
axisaxis to reduce along.
See also
reduceArgMin, minMaxLoc, min, max, compare, reduce

◆ reduceArgMin() [1/2]

static void OpenCVForUnity.CoreModule.Core.reduceArgMin ( Mat  src,
Mat  dst,
int  axis,
bool  lastIndex 
)
static

Finds indices of min elements along provided axis.

Note
  • If input or output array is not continuous, this function will create an internal copy.
  • NaN handling is left unspecified, see patchNaNs().
  • The returned index is always in bounds of input matrix.
Parameters
srcinput single-channel array.
dstoutput array of type CV_32SC1 with the same dimensionality as src, except for axis being reduced - it should be set to 1.
lastIndexwhether to get the index of first or last occurrence of min.
axisaxis to reduce along.
See also
reduceArgMax, minMaxLoc, min, max, compare, reduce

◆ reduceArgMin() [2/2]

static void OpenCVForUnity.CoreModule.Core.reduceArgMin ( Mat  src,
Mat  dst,
int  axis 
)
static

Finds indices of min elements along provided axis.

Note
  • If input or output array is not continuous, this function will create an internal copy.
  • NaN handling is left unspecified, see patchNaNs().
  • The returned index is always in bounds of input matrix.
Parameters
srcinput single-channel array.
dstoutput array of type CV_32SC1 with the same dimensionality as src, except for axis being reduced - it should be set to 1.
lastIndexwhether to get the index of first or last occurrence of min.
axisaxis to reduce along.
See also
reduceArgMax, minMaxLoc, min, max, compare, reduce

◆ repeat()

static void OpenCVForUnity.CoreModule.Core.repeat ( Mat  src,
int  ny,
int  nx,
Mat  dst 
)
static

Fills the output array with repeated copies of the input array.

The function cv::repeat duplicates the input array one or more times along each of the two axes:

\[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\]

The second variant of the function is more convenient to use with MatrixExpressions.

Parameters
srcinput array to replicate.
nyFlag to specify how many times the src is repeated along the vertical axis.
nxFlag to specify how many times the src is repeated along the horizontal axis.
dstoutput array of the same type as src.
See also
cv::reduce

◆ rotate()

static void OpenCVForUnity.CoreModule.Core.rotate ( Mat  src,
Mat  dst,
int  rotateCode 
)
static

Rotates a 2D array in multiples of 90 degrees. The function cv::rotate rotates the array in one of three different ways: Rotate by 90 degrees clockwise (rotateCode = ROTATE_90_CLOCKWISE). Rotate by 180 degrees clockwise (rotateCode = ROTATE_180). Rotate by 270 degrees clockwise (rotateCode = ROTATE_90_COUNTERCLOCKWISE).

Parameters
srcinput array.
dstoutput array of the same type as src. The size is the same with ROTATE_180, and the rows and cols are switched for ROTATE_90_CLOCKWISE and ROTATE_90_COUNTERCLOCKWISE.
rotateCodean enum to specify how to rotate the array; see the enum #RotateFlags
See also
transpose , repeat , completeSymm, flip, RotateFlags

◆ scaleAdd()

static void OpenCVForUnity.CoreModule.Core.scaleAdd ( Mat  src1,
double  alpha,
Mat  src2,
Mat  dst 
)
static

Calculates the sum of a scaled array and another array.

The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY or SAXPY in BLAS. It calculates the sum of a scaled array and another array:

\[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\]

The function can also be emulated with a matrix expression, for example:

Mat A(3, 3, CV_64F);
...
A.row(0) = A.row(1)*2 + A.row(2);
Parameters
src1first input array.
alphascale factor for the first array.
src2second input array of the same size and type as src1.
dstoutput array of the same size and type as src1.
See also
add, addWeighted, subtract, Mat::dot, Mat::convertTo

◆ setErrorVerbosity()

static void OpenCVForUnity.CoreModule.Core.setErrorVerbosity ( bool  verbose)
static

◆ setIdentity() [1/2]

static void OpenCVForUnity.CoreModule.Core.setIdentity ( Mat  mtx,
Scalar  s 
)
static

Initializes a scaled identity matrix.

The function cv::setIdentity initializes a scaled identity matrix:

\[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\]

The function can also be emulated using the matrix initializers and the matrix expressions:

Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
Parameters
mtxmatrix to initialize (not necessarily square).
svalue to assign to diagonal elements.
See also
Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=

◆ setIdentity() [2/2]

static void OpenCVForUnity.CoreModule.Core.setIdentity ( Mat  mtx)
static

Initializes a scaled identity matrix.

The function cv::setIdentity initializes a scaled identity matrix:

\[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\]

The function can also be emulated using the matrix initializers and the matrix expressions:

Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
Parameters
mtxmatrix to initialize (not necessarily square).
svalue to assign to diagonal elements.
See also
Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=

◆ setNumThreads()

static void OpenCVForUnity.CoreModule.Core.setNumThreads ( int  nthreads)
static

OpenCV will try to set the number of threads for subsequent parallel regions.

If threads == 1, OpenCV will disable threading optimizations and run all it's functions sequentially. Passing threads < 0 will reset threads number to system default. The function is not thread-safe. It must not be called in parallel region or concurrent threads.

OpenCV will try to run its functions with specified threads number, but some behaviour differs from framework:

  • TBB - User-defined parallel constructions will run with the same threads number, if another is not specified. If later on user creates his own scheduler, OpenCV will use it.
  • OpenMP - No special defined behaviour.
  • Concurrency - If threads == 1, OpenCV will disable threading optimizations and run its functions sequentially.
  • GCD - Supports only values <= 0.
  • C= - No special defined behaviour.
    Parameters
    nthreadsNumber of threads used by OpenCV.
    See also
    getNumThreads, getThreadNum

◆ setRNGSeed()

static void OpenCVForUnity.CoreModule.Core.setRNGSeed ( int  seed)
static

Sets state of default random number generator.

The function cv::setRNGSeed sets state of default random number generator to custom value.

Parameters
seednew state for default random number generator
See also
RNG, randu, randn

◆ setUseIPP()

static void OpenCVForUnity.CoreModule.Core.setUseIPP ( bool  flag)
static

◆ setUseIPP_NotExact()

static void OpenCVForUnity.CoreModule.Core.setUseIPP_NotExact ( bool  flag)
static

◆ setUseOptimized()

static void OpenCVForUnity.CoreModule.Core.setUseOptimized ( bool  onoff)
static

Enables or disables the optimized code.

The function can be used to dynamically turn on and off optimized dispatched code (code that uses SSE4.2, AVX/AVX2, and other instructions on the platforms that support it). It sets a global flag that is further checked by OpenCV functions. Since the flag is not checked in the inner OpenCV loops, it is only safe to call the function on the very top level in your application where you can be sure that no other OpenCV function is currently executed.

By default, the optimized code is enabled unless you disable it in CMake. The current status can be retrieved using useOptimized.

Parameters
onoffThe boolean flag specifying whether the optimized code should be used (onoff=true) or not (onoff=false).

◆ solve() [1/2]

static bool OpenCVForUnity.CoreModule.Core.solve ( Mat  src1,
Mat  src2,
Mat  dst,
int  flags 
)
static

Solves one or more linear systems or least-squares problems.

The function cv::solve solves a linear system or least-squares problem (the latter is possible with SVD or QR methods, or by specifying the flag DECOMP_NORMAL ):

\[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\]

If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 if src1 (or \(\texttt{src1}^T\texttt{src1}\) ) is non-singular. Otherwise, it returns 0. In the latter case, dst is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.

Note
If you want to find a unity-norm solution of an under-defined singular system \(\texttt{src1}\cdot\texttt{dst}=0\) , the function solve will not do the work. Use SVD::solveZ instead.
Parameters
src1input matrix on the left-hand side of the system.
src2input matrix on the right-hand side of the system.
dstoutput solution.
flagssolution (matrix inversion) method (#DecompTypes)
See also
invert, SVD, eigen

◆ solve() [2/2]

static bool OpenCVForUnity.CoreModule.Core.solve ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Solves one or more linear systems or least-squares problems.

The function cv::solve solves a linear system or least-squares problem (the latter is possible with SVD or QR methods, or by specifying the flag DECOMP_NORMAL ):

\[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\]

If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 if src1 (or \(\texttt{src1}^T\texttt{src1}\) ) is non-singular. Otherwise, it returns 0. In the latter case, dst is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.

Note
If you want to find a unity-norm solution of an under-defined singular system \(\texttt{src1}\cdot\texttt{dst}=0\) , the function solve will not do the work. Use SVD::solveZ instead.
Parameters
src1input matrix on the left-hand side of the system.
src2input matrix on the right-hand side of the system.
dstoutput solution.
flagssolution (matrix inversion) method (#DecompTypes)
See also
invert, SVD, eigen

◆ solveCubic()

static int OpenCVForUnity.CoreModule.Core.solveCubic ( Mat  coeffs,
Mat  roots 
)
static

Finds the real roots of a cubic equation.

The function solveCubic finds the real roots of a cubic equation:

  • if coeffs is a 4-element vector:

    \[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\]

  • if coeffs is a 3-element vector:

    \[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\]

The roots are stored in the roots array.

Parameters
coeffsequation coefficients, an array of 3 or 4 elements.
rootsoutput array of real roots that has 1 or 3 elements.
Returns
number of real roots. It can be 0, 1 or 2.

◆ solvePoly() [1/2]

static double OpenCVForUnity.CoreModule.Core.solvePoly ( Mat  coeffs,
Mat  roots,
int  maxIters 
)
static

Finds the real or complex roots of a polynomial equation.

The function cv::solvePoly finds real and complex roots of a polynomial equation:

\[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\]

Parameters
coeffsarray of polynomial coefficients.
rootsoutput (complex) array of roots.
maxItersmaximum number of iterations the algorithm does.

◆ solvePoly() [2/2]

static double OpenCVForUnity.CoreModule.Core.solvePoly ( Mat  coeffs,
Mat  roots 
)
static

Finds the real or complex roots of a polynomial equation.

The function cv::solvePoly finds real and complex roots of a polynomial equation:

\[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\]

Parameters
coeffsarray of polynomial coefficients.
rootsoutput (complex) array of roots.
maxItersmaximum number of iterations the algorithm does.

◆ sort()

static void OpenCVForUnity.CoreModule.Core.sort ( Mat  src,
Mat  dst,
int  flags 
)
static

Sorts each row or each column of a matrix.

The function cv::sort sorts each matrix row or each matrix column in ascending or descending order. So you should pass two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can use STL std::sort generic function with the proper comparison predicate.

Parameters
srcinput single-channel array.
dstoutput array of the same size and type as src.
flagsoperation flags, a combination of #SortFlags
See also
sortIdx, randShuffle

◆ sortIdx()

static void OpenCVForUnity.CoreModule.Core.sortIdx ( Mat  src,
Mat  dst,
int  flags 
)
static

Sorts each row or each column of a matrix.

The function cv::sortIdx sorts each matrix row or each matrix column in the ascending or descending order. So you should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array. For example:

Mat A = Mat::eye(3,3,CV_32F), B;
// B will probably contain
// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
Parameters
srcinput single-channel array.
dstoutput integer array of the same size as src.
flagsoperation flags that could be a combination of cv::SortFlags
See also
sort, randShuffle

◆ split()

static void OpenCVForUnity.CoreModule.Core.split ( Mat  m,
List< Mat mv 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
minput multi-channel array.
mvoutput vector of arrays; the arrays themselves are reallocated, if needed.

◆ sqrt()

static void OpenCVForUnity.CoreModule.Core.sqrt ( Mat  src,
Mat  dst 
)
static

Calculates a square root of array elements.

The function cv::sqrt calculates a square root of each input array element. In case of multi-channel arrays, each channel is processed independently. The accuracy is approximately the same as of the built-in std::sqrt .

Parameters
srcinput floating-point array.
dstoutput array of the same size and type as src.

◆ subtract() [1/6]

static void OpenCVForUnity.CoreModule.Core.subtract ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask,
int  dtype 
)
static

Calculates the per-element difference between two arrays or array and a scalar.

The function subtract calculates:

  • Difference between two arrays, when both input arrays have the same size and the same number of channels:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\]

  • Difference between an array and a scalar, when src2 is constructed from Scalar or has the same number of elements as src1.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\]

  • Difference between a scalar and an array, when src1 is constructed from Scalar or has the same number of elements as src2.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]

  • The reverse difference between a scalar and an array in the case of SubRS:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\]

    where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions:

dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case the output array will have the same depth as the input array, be it src1, src2 or both.

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. subtract(src,X) means subtract(src,(X,X,X,X)). subtract(src,(X,)) means subtract(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array of the same size and the same number of channels as the input array.
maskoptional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.
dtypeoptional depth of the output array
See also
add, addWeighted, scaleAdd, Mat::convertTo

◆ subtract() [2/6]

static void OpenCVForUnity.CoreModule.Core.subtract ( Mat  src1,
Mat  src2,
Mat  dst,
Mat  mask 
)
static

Calculates the per-element difference between two arrays or array and a scalar.

The function subtract calculates:

  • Difference between two arrays, when both input arrays have the same size and the same number of channels:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\]

  • Difference between an array and a scalar, when src2 is constructed from Scalar or has the same number of elements as src1.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\]

  • Difference between a scalar and an array, when src1 is constructed from Scalar or has the same number of elements as src2.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]

  • The reverse difference between a scalar and an array in the case of SubRS:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\]

    where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions:

dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case the output array will have the same depth as the input array, be it src1, src2 or both.

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. subtract(src,X) means subtract(src,(X,X,X,X)). subtract(src,(X,)) means subtract(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array of the same size and the same number of channels as the input array.
maskoptional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.
dtypeoptional depth of the output array
See also
add, addWeighted, scaleAdd, Mat::convertTo

◆ subtract() [3/6]

static void OpenCVForUnity.CoreModule.Core.subtract ( Mat  src1,
Mat  src2,
Mat  dst 
)
static

Calculates the per-element difference between two arrays or array and a scalar.

The function subtract calculates:

  • Difference between two arrays, when both input arrays have the same size and the same number of channels:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\]

  • Difference between an array and a scalar, when src2 is constructed from Scalar or has the same number of elements as src1.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\]

  • Difference between a scalar and an array, when src1 is constructed from Scalar or has the same number of elements as src2.channels():

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\]

  • The reverse difference between a scalar and an array in the case of SubRS:

    \[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\]

    where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.

The first function in the list above can be replaced with matrix expressions:

dst = src1 - src2;
dst -= src1; // equivalent to subtract(dst, src1, dst);

The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by dtype parameter. In the second and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this case the output array will have the same depth as the input array, be it src1, src2 or both.

Note
Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect sign in the case of overflow.
(Python) Be careful to difference behaviour between src1/src2 are single number and they are tuple/array. subtract(src,X) means subtract(src,(X,X,X,X)). subtract(src,(X,)) means subtract(src,(X,0,0,0)).
Parameters
src1first input array or a scalar.
src2second input array or a scalar.
dstoutput array of the same size and the same number of channels as the input array.
maskoptional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.
dtypeoptional depth of the output array
See also
add, addWeighted, scaleAdd, Mat::convertTo

◆ subtract() [4/6]

static void OpenCVForUnity.CoreModule.Core.subtract ( Mat  src1,
Scalar  src2,
Mat  dst,
Mat  mask,
int  dtype 
)
static

◆ subtract() [5/6]

static void OpenCVForUnity.CoreModule.Core.subtract ( Mat  src1,
Scalar  src2,
Mat  dst,
Mat  mask 
)
static

◆ subtract() [6/6]

static void OpenCVForUnity.CoreModule.Core.subtract ( Mat  src1,
Scalar  src2,
Mat  dst 
)
static

◆ sumElems()

static Scalar OpenCVForUnity.CoreModule.Core.sumElems ( Mat  src)
static

Calculates the sum of array elements.

The function cv::sum calculates and returns the sum of array elements, independently for each channel.

Parameters
srcinput array that must have from 1 to 4 channels.
See also
countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce

◆ SVBackSubst()

static void OpenCVForUnity.CoreModule.Core.SVBackSubst ( Mat  w,
Mat  u,
Mat  vt,
Mat  rhs,
Mat  dst 
)
static

wrap SVD::backSubst

◆ SVDecomp() [1/2]

static void OpenCVForUnity.CoreModule.Core.SVDecomp ( Mat  src,
Mat  w,
Mat  u,
Mat  vt,
int  flags 
)
static

wrap SVD::compute

◆ SVDecomp() [2/2]

static void OpenCVForUnity.CoreModule.Core.SVDecomp ( Mat  src,
Mat  w,
Mat  u,
Mat  vt 
)
static

wrap SVD::compute

◆ trace()

static Scalar OpenCVForUnity.CoreModule.Core.trace ( Mat  mtx)
static

Returns the trace of a matrix.

The function cv::trace returns the sum of the diagonal elements of the matrix mtx .

\[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\]

Parameters
mtxinput matrix.

◆ transform()

static void OpenCVForUnity.CoreModule.Core.transform ( Mat  src,
Mat  dst,
Mat  m 
)
static

Performs the matrix transformation of every array element.

The function cv::transform performs the matrix transformation of every element of the array src and stores the results in dst :

\[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\]

(when m.cols=src.channels() ), or

\[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\]

(when m.cols=src.channels()+1 )

Every element of the N -channel array src is interpreted as N -element vector that is transformed using the M x N or M x (N+1) matrix m to M-element vector - the corresponding element of the output array dst .

The function may be used for geometrical transformation of N -dimensional points, arbitrary linear color space transformation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

Parameters
srcinput array that must have as many channels (1 to 4) as m.cols or m.cols-1.
dstoutput array of the same size and depth as src; it has as many channels as m.rows.
mtransformation 2x2 or 2x3 floating-point matrix.
See also
perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective

◆ transpose()

static void OpenCVForUnity.CoreModule.Core.transpose ( Mat  src,
Mat  dst 
)
static

Transposes a matrix.

The function cv::transpose transposes the matrix src :

\[\texttt{dst} (i,j) = \texttt{src} (j,i)\]

Note
No complex conjugation is done in case of a complex matrix. It should be done separately if needed.
Parameters
srcinput array.
dstoutput array of the same type as src.

◆ transposeND()

static void OpenCVForUnity.CoreModule.Core.transposeND ( Mat  src,
MatOfInt  order,
Mat  dst 
)
static

Transpose for n-dimensional matrices.

Note
Input should be continuous single-channel matrix.
Parameters
srcinput array.
ordera permutation of [0,1,..,N-1] where N is the number of axes of src. The i’th axis of dst will correspond to the axis numbered order[i] of the input.
dstoutput array of the same type as src.

◆ useIPP()

static bool OpenCVForUnity.CoreModule.Core.useIPP ( )
static

proxy for hal::Cholesky

◆ useIPP_NotExact()

static bool OpenCVForUnity.CoreModule.Core.useIPP_NotExact ( )
static

◆ useOptimized()

static bool OpenCVForUnity.CoreModule.Core.useOptimized ( )
static

Returns the status of optimized code usage.

The function returns true if the optimized code is enabled. Otherwise, it returns false.

◆ vconcat()

static void OpenCVForUnity.CoreModule.Core.vconcat ( List< Mat src,
Mat  dst 
)
static

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

std::vector&lt;cv::Mat&gt; matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
cv::Mat out;
cv::vconcat( matrices, out );
//out:
//[1, 1, 1, 1;
// 2, 2, 2, 2;
// 3, 3, 3, 3]
Parameters
srcinput array or vector of matrices. all of the matrices must have the same number of cols and the same depth
dstoutput array. It has the same number of cols and depth as the src, and the sum of rows of the src. same depth.

Member Data Documentation

◆ BadAlign

const int OpenCVForUnity.CoreModule.Core.BadAlign = -21

◆ BadAlphaChannel

const int OpenCVForUnity.CoreModule.Core.BadAlphaChannel = -18

◆ BadCallBack

const int OpenCVForUnity.CoreModule.Core.BadCallBack = -22

◆ BadCOI

const int OpenCVForUnity.CoreModule.Core.BadCOI = -24

◆ BadDataPtr

const int OpenCVForUnity.CoreModule.Core.BadDataPtr = -12

◆ BadDepth

const int OpenCVForUnity.CoreModule.Core.BadDepth = -17

◆ BadImageSize

const int OpenCVForUnity.CoreModule.Core.BadImageSize = -10

◆ BadModelOrChSeq

const int OpenCVForUnity.CoreModule.Core.BadModelOrChSeq = -14

◆ BadNumChannel1U

const int OpenCVForUnity.CoreModule.Core.BadNumChannel1U = -16

◆ BadNumChannels

const int OpenCVForUnity.CoreModule.Core.BadNumChannels = -15

◆ BadOffset

const int OpenCVForUnity.CoreModule.Core.BadOffset = -11

◆ BadOrder

const int OpenCVForUnity.CoreModule.Core.BadOrder = -19

◆ BadOrigin

const int OpenCVForUnity.CoreModule.Core.BadOrigin = -20

◆ BadROISize

const int OpenCVForUnity.CoreModule.Core.BadROISize = -25

◆ BadStep

const int OpenCVForUnity.CoreModule.Core.BadStep = -13

◆ BadTileSize

const int OpenCVForUnity.CoreModule.Core.BadTileSize = -23

◆ BORDER_CONSTANT

const int OpenCVForUnity.CoreModule.Core.BORDER_CONSTANT = 0

◆ BORDER_DEFAULT

const int OpenCVForUnity.CoreModule.Core.BORDER_DEFAULT = BORDER_REFLECT_101

◆ BORDER_ISOLATED

const int OpenCVForUnity.CoreModule.Core.BORDER_ISOLATED = 16

◆ BORDER_REFLECT

const int OpenCVForUnity.CoreModule.Core.BORDER_REFLECT = 2

◆ BORDER_REFLECT101

const int OpenCVForUnity.CoreModule.Core.BORDER_REFLECT101 = BORDER_REFLECT_101

◆ BORDER_REFLECT_101

const int OpenCVForUnity.CoreModule.Core.BORDER_REFLECT_101 = 4

◆ BORDER_REPLICATE

const int OpenCVForUnity.CoreModule.Core.BORDER_REPLICATE = 1

◆ BORDER_TRANSPARENT

const int OpenCVForUnity.CoreModule.Core.BORDER_TRANSPARENT = 5

◆ BORDER_WRAP

const int OpenCVForUnity.CoreModule.Core.BORDER_WRAP = 3

◆ CMP_EQ

const int OpenCVForUnity.CoreModule.Core.CMP_EQ = 0

◆ CMP_GE

const int OpenCVForUnity.CoreModule.Core.CMP_GE = 2

◆ CMP_GT

const int OpenCVForUnity.CoreModule.Core.CMP_GT = 1

◆ CMP_LE

const int OpenCVForUnity.CoreModule.Core.CMP_LE = 4

◆ CMP_LT

const int OpenCVForUnity.CoreModule.Core.CMP_LT = 3

◆ CMP_NE

const int OpenCVForUnity.CoreModule.Core.CMP_NE = 5

◆ COVAR_COLS

const int OpenCVForUnity.CoreModule.Core.COVAR_COLS = 16

◆ COVAR_NORMAL

const int OpenCVForUnity.CoreModule.Core.COVAR_NORMAL = 1

◆ COVAR_ROWS

const int OpenCVForUnity.CoreModule.Core.COVAR_ROWS = 8

◆ COVAR_SCALE

const int OpenCVForUnity.CoreModule.Core.COVAR_SCALE = 4

◆ COVAR_SCRAMBLED

const int OpenCVForUnity.CoreModule.Core.COVAR_SCRAMBLED = 0

◆ COVAR_USE_AVG

const int OpenCVForUnity.CoreModule.Core.COVAR_USE_AVG = 2

◆ DCT_INVERSE

const int OpenCVForUnity.CoreModule.Core.DCT_INVERSE = DFT_INVERSE

◆ DCT_ROWS

const int OpenCVForUnity.CoreModule.Core.DCT_ROWS = DFT_ROWS

◆ DECOMP_CHOLESKY

const int OpenCVForUnity.CoreModule.Core.DECOMP_CHOLESKY = 3

◆ DECOMP_EIG

const int OpenCVForUnity.CoreModule.Core.DECOMP_EIG = 2

◆ DECOMP_LU

const int OpenCVForUnity.CoreModule.Core.DECOMP_LU = 0

◆ DECOMP_NORMAL

const int OpenCVForUnity.CoreModule.Core.DECOMP_NORMAL = 16

◆ DECOMP_QR

const int OpenCVForUnity.CoreModule.Core.DECOMP_QR = 4

◆ DECOMP_SVD

const int OpenCVForUnity.CoreModule.Core.DECOMP_SVD = 1

◆ DFT_COMPLEX_INPUT

const int OpenCVForUnity.CoreModule.Core.DFT_COMPLEX_INPUT = 64

◆ DFT_COMPLEX_OUTPUT

const int OpenCVForUnity.CoreModule.Core.DFT_COMPLEX_OUTPUT = 16

◆ DFT_INVERSE

const int OpenCVForUnity.CoreModule.Core.DFT_INVERSE = 1

◆ DFT_REAL_OUTPUT

const int OpenCVForUnity.CoreModule.Core.DFT_REAL_OUTPUT = 32

◆ DFT_ROWS

const int OpenCVForUnity.CoreModule.Core.DFT_ROWS = 4

◆ DFT_SCALE

const int OpenCVForUnity.CoreModule.Core.DFT_SCALE = 2

◆ FILLED

const int OpenCVForUnity.CoreModule.Core.FILLED = -1

◆ Formatter_FMT_C

const int OpenCVForUnity.CoreModule.Core.Formatter_FMT_C = 5

◆ Formatter_FMT_CSV

const int OpenCVForUnity.CoreModule.Core.Formatter_FMT_CSV = 2

◆ Formatter_FMT_DEFAULT

const int OpenCVForUnity.CoreModule.Core.Formatter_FMT_DEFAULT = 0

◆ Formatter_FMT_MATLAB

const int OpenCVForUnity.CoreModule.Core.Formatter_FMT_MATLAB = 1

◆ Formatter_FMT_NUMPY

const int OpenCVForUnity.CoreModule.Core.Formatter_FMT_NUMPY = 4

◆ Formatter_FMT_PYTHON

const int OpenCVForUnity.CoreModule.Core.Formatter_FMT_PYTHON = 3

◆ GEMM_1_T

const int OpenCVForUnity.CoreModule.Core.GEMM_1_T = 1

◆ GEMM_2_T

const int OpenCVForUnity.CoreModule.Core.GEMM_2_T = 2

◆ GEMM_3_T

const int OpenCVForUnity.CoreModule.Core.GEMM_3_T = 4

◆ GpuApiCallError

const int OpenCVForUnity.CoreModule.Core.GpuApiCallError = -217

◆ GpuNotSupported

const int OpenCVForUnity.CoreModule.Core.GpuNotSupported = -216

◆ HeaderIsNull

const int OpenCVForUnity.CoreModule.Core.HeaderIsNull = -9

◆ KMEANS_PP_CENTERS

const int OpenCVForUnity.CoreModule.Core.KMEANS_PP_CENTERS = 2

◆ KMEANS_RANDOM_CENTERS

const int OpenCVForUnity.CoreModule.Core.KMEANS_RANDOM_CENTERS = 0

◆ KMEANS_USE_INITIAL_LABELS

const int OpenCVForUnity.CoreModule.Core.KMEANS_USE_INITIAL_LABELS = 1

◆ MaskIsTiled

const int OpenCVForUnity.CoreModule.Core.MaskIsTiled = -26

◆ NATIVE_LIBRARY_NAME

readonly string OpenCVForUnity.CoreModule.Core.NATIVE_LIBRARY_NAME = getNativeLibraryName()
static

◆ NORM_HAMMING

const int OpenCVForUnity.CoreModule.Core.NORM_HAMMING = 6

◆ NORM_HAMMING2

const int OpenCVForUnity.CoreModule.Core.NORM_HAMMING2 = 7

◆ NORM_INF

const int OpenCVForUnity.CoreModule.Core.NORM_INF = 1

◆ NORM_L1

const int OpenCVForUnity.CoreModule.Core.NORM_L1 = 2

◆ NORM_L2

const int OpenCVForUnity.CoreModule.Core.NORM_L2 = 4

◆ NORM_L2SQR

const int OpenCVForUnity.CoreModule.Core.NORM_L2SQR = 5

◆ NORM_MINMAX

const int OpenCVForUnity.CoreModule.Core.NORM_MINMAX = 32

◆ NORM_RELATIVE

const int OpenCVForUnity.CoreModule.Core.NORM_RELATIVE = 8

◆ NORM_TYPE_MASK

const int OpenCVForUnity.CoreModule.Core.NORM_TYPE_MASK = 7

◆ OpenCLApiCallError

const int OpenCVForUnity.CoreModule.Core.OpenCLApiCallError = -220

◆ OpenCLDoubleNotSupported

const int OpenCVForUnity.CoreModule.Core.OpenCLDoubleNotSupported = -221

◆ OpenCLInitError

const int OpenCVForUnity.CoreModule.Core.OpenCLInitError = -222

◆ OpenCLNoAMDBlasFft

const int OpenCVForUnity.CoreModule.Core.OpenCLNoAMDBlasFft = -223

◆ OpenGlApiCallError

const int OpenCVForUnity.CoreModule.Core.OpenGlApiCallError = -219

◆ OpenGlNotSupported

const int OpenCVForUnity.CoreModule.Core.OpenGlNotSupported = -218

◆ Param_ALGORITHM

const int OpenCVForUnity.CoreModule.Core.Param_ALGORITHM = 6

◆ Param_BOOLEAN

const int OpenCVForUnity.CoreModule.Core.Param_BOOLEAN = 1

◆ Param_FLOAT

const int OpenCVForUnity.CoreModule.Core.Param_FLOAT = 7

◆ Param_INT

const int OpenCVForUnity.CoreModule.Core.Param_INT = 0

◆ Param_MAT

const int OpenCVForUnity.CoreModule.Core.Param_MAT = 4

◆ Param_MAT_VECTOR

const int OpenCVForUnity.CoreModule.Core.Param_MAT_VECTOR = 5

◆ Param_REAL

const int OpenCVForUnity.CoreModule.Core.Param_REAL = 2

◆ Param_SCALAR

const int OpenCVForUnity.CoreModule.Core.Param_SCALAR = 12

◆ Param_STRING

const int OpenCVForUnity.CoreModule.Core.Param_STRING = 3

◆ Param_UCHAR

const int OpenCVForUnity.CoreModule.Core.Param_UCHAR = 11

◆ Param_UINT64

const int OpenCVForUnity.CoreModule.Core.Param_UINT64 = 9

◆ Param_UNSIGNED_INT

const int OpenCVForUnity.CoreModule.Core.Param_UNSIGNED_INT = 8

◆ PCA_DATA_AS_COL

const int OpenCVForUnity.CoreModule.Core.PCA_DATA_AS_COL = 1

◆ PCA_DATA_AS_ROW

const int OpenCVForUnity.CoreModule.Core.PCA_DATA_AS_ROW = 0

◆ PCA_USE_AVG

const int OpenCVForUnity.CoreModule.Core.PCA_USE_AVG = 2

◆ REDUCE_AVG

const int OpenCVForUnity.CoreModule.Core.REDUCE_AVG = 1

◆ REDUCE_MAX

const int OpenCVForUnity.CoreModule.Core.REDUCE_MAX = 2

◆ REDUCE_MIN

const int OpenCVForUnity.CoreModule.Core.REDUCE_MIN = 3

◆ REDUCE_SUM

const int OpenCVForUnity.CoreModule.Core.REDUCE_SUM = 0

◆ REDUCE_SUM2

const int OpenCVForUnity.CoreModule.Core.REDUCE_SUM2 = 4

◆ RNG_NORMAL

const int OpenCVForUnity.CoreModule.Core.RNG_NORMAL = 1

◆ RNG_UNIFORM

const int OpenCVForUnity.CoreModule.Core.RNG_UNIFORM = 0

◆ ROTATE_180

const int OpenCVForUnity.CoreModule.Core.ROTATE_180 = 1

◆ ROTATE_90_CLOCKWISE

const int OpenCVForUnity.CoreModule.Core.ROTATE_90_CLOCKWISE = 0

◆ ROTATE_90_COUNTERCLOCKWISE

const int OpenCVForUnity.CoreModule.Core.ROTATE_90_COUNTERCLOCKWISE = 2

◆ SORT_ASCENDING

const int OpenCVForUnity.CoreModule.Core.SORT_ASCENDING = 0

◆ SORT_DESCENDING

const int OpenCVForUnity.CoreModule.Core.SORT_DESCENDING = 16

◆ SORT_EVERY_COLUMN

const int OpenCVForUnity.CoreModule.Core.SORT_EVERY_COLUMN = 1

◆ SORT_EVERY_ROW

const int OpenCVForUnity.CoreModule.Core.SORT_EVERY_ROW = 0

◆ StsAssert

const int OpenCVForUnity.CoreModule.Core.StsAssert = -215

◆ StsAutoTrace

const int OpenCVForUnity.CoreModule.Core.StsAutoTrace = -8

◆ StsBackTrace

const int OpenCVForUnity.CoreModule.Core.StsBackTrace = -1

◆ StsBadArg

const int OpenCVForUnity.CoreModule.Core.StsBadArg = -5

◆ StsBadFlag

const int OpenCVForUnity.CoreModule.Core.StsBadFlag = -206

◆ StsBadFunc

const int OpenCVForUnity.CoreModule.Core.StsBadFunc = -6

◆ StsBadMask

const int OpenCVForUnity.CoreModule.Core.StsBadMask = -208

◆ StsBadMemBlock

const int OpenCVForUnity.CoreModule.Core.StsBadMemBlock = -214

◆ StsBadPoint

const int OpenCVForUnity.CoreModule.Core.StsBadPoint = -207

◆ StsBadSize

const int OpenCVForUnity.CoreModule.Core.StsBadSize = -201

◆ StsDivByZero

const int OpenCVForUnity.CoreModule.Core.StsDivByZero = -202

◆ StsError

const int OpenCVForUnity.CoreModule.Core.StsError = -2

◆ StsFilterOffsetErr

const int OpenCVForUnity.CoreModule.Core.StsFilterOffsetErr = -31

◆ StsFilterStructContentErr

const int OpenCVForUnity.CoreModule.Core.StsFilterStructContentErr = -29

◆ StsInplaceNotSupported

const int OpenCVForUnity.CoreModule.Core.StsInplaceNotSupported = -203

◆ StsInternal

const int OpenCVForUnity.CoreModule.Core.StsInternal = -3

◆ StsKernelStructContentErr

const int OpenCVForUnity.CoreModule.Core.StsKernelStructContentErr = -30

◆ StsNoConv

const int OpenCVForUnity.CoreModule.Core.StsNoConv = -7

◆ StsNoMem

const int OpenCVForUnity.CoreModule.Core.StsNoMem = -4

◆ StsNotImplemented

const int OpenCVForUnity.CoreModule.Core.StsNotImplemented = -213

◆ StsNullPtr

const int OpenCVForUnity.CoreModule.Core.StsNullPtr = -27

◆ StsObjectNotFound

const int OpenCVForUnity.CoreModule.Core.StsObjectNotFound = -204

◆ StsOk

const int OpenCVForUnity.CoreModule.Core.StsOk = 0

◆ StsOutOfRange

const int OpenCVForUnity.CoreModule.Core.StsOutOfRange = -211

◆ StsParseError

const int OpenCVForUnity.CoreModule.Core.StsParseError = -212

◆ StsUnmatchedFormats

const int OpenCVForUnity.CoreModule.Core.StsUnmatchedFormats = -205

◆ StsUnmatchedSizes

const int OpenCVForUnity.CoreModule.Core.StsUnmatchedSizes = -209

◆ StsUnsupportedFormat

const int OpenCVForUnity.CoreModule.Core.StsUnsupportedFormat = -210

◆ StsVecLengthErr

const int OpenCVForUnity.CoreModule.Core.StsVecLengthErr = -28

◆ SVD_FULL_UV

const int OpenCVForUnity.CoreModule.Core.SVD_FULL_UV = 4

◆ SVD_MODIFY_A

const int OpenCVForUnity.CoreModule.Core.SVD_MODIFY_A = 1

◆ SVD_NO_UV

const int OpenCVForUnity.CoreModule.Core.SVD_NO_UV = 2

◆ VERSION

readonly string OpenCVForUnity.CoreModule.Core.VERSION = getVersion()
static

◆ VERSION_MAJOR

readonly int OpenCVForUnity.CoreModule.Core.VERSION_MAJOR = getVersionMajorJ()
static

◆ VERSION_MINOR

readonly int OpenCVForUnity.CoreModule.Core.VERSION_MINOR = getVersionMinorJ()
static

◆ VERSION_REVISION

readonly int OpenCVForUnity.CoreModule.Core.VERSION_REVISION = getVersionRevisionJ()
static

◆ VERSION_STATUS

readonly string OpenCVForUnity.CoreModule.Core.VERSION_STATUS = getVersionStatusJ()
static

The documentation for this class was generated from the following file: