Class encapsulating training data.
More...
|
static TrainData | __fromPtr__ (IntPtr addr) |
|
static Mat | getSubVector (Mat vec, Mat idx) |
| Extract from 1D vector elements specified by passed indexes. More...
|
|
static Mat | getSubMatrix (Mat matrix, Mat idx, int layout) |
| Extract from matrix rows/cols specified by passed indexes. More...
|
|
static TrainData | create (Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights, Mat varType) |
| Creates training data from in-memory arrays. More...
|
|
static TrainData | create (Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx, Mat sampleWeights) |
| Creates training data from in-memory arrays. More...
|
|
static TrainData | create (Mat samples, int layout, Mat responses, Mat varIdx, Mat sampleIdx) |
| Creates training data from in-memory arrays. More...
|
|
static TrainData | create (Mat samples, int layout, Mat responses, Mat varIdx) |
| Creates training data from in-memory arrays. More...
|
|
static TrainData | create (Mat samples, int layout, Mat responses) |
| Creates training data from in-memory arrays. More...
|
|
static IntPtr | ThrowIfNullIntPtr (IntPtr ptr) |
|
Class encapsulating training data.
Please note that the class only specifies the interface of training data, but not implementation. All the statistical model classes in ml module accepts Ptr<TrainData> as parameter. In other words, you can create your own class derived from TrainData and pass smart pointer to the instance of this class into StatModel::train.
- See also
- ml_intro_data
◆ __fromPtr__()
static TrainData OpenCVForUnity.MlModule.TrainData.__fromPtr__ |
( |
IntPtr |
addr | ) |
|
|
static |
◆ create() [1/5]
static TrainData OpenCVForUnity.MlModule.TrainData.create |
( |
Mat |
samples, |
|
|
int |
layout, |
|
|
Mat |
responses, |
|
|
Mat |
varIdx, |
|
|
Mat |
sampleIdx, |
|
|
Mat |
sampleWeights, |
|
|
Mat |
varType |
|
) |
| |
|
static |
Creates training data from in-memory arrays.
- Parameters
-
samples | matrix of samples. It should have CV_32F type. |
layout | see ml::SampleTypes. |
responses | matrix of responses. If the responses are scalar, they should be stored as a single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former case the responses are considered as ordered by default; in the latter case - as categorical) |
varIdx | vector specifying which variables to use for training. It can be an integer vector (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active variables. |
sampleIdx | vector specifying which samples to use for training. It can be an integer vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training samples. |
sampleWeights | optional vector with weights for each sample. It should have CV_32F type. |
varType | optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses> , containing types of each input and output variable. See ml::VariableTypes. |
◆ create() [2/5]
static TrainData OpenCVForUnity.MlModule.TrainData.create |
( |
Mat |
samples, |
|
|
int |
layout, |
|
|
Mat |
responses, |
|
|
Mat |
varIdx, |
|
|
Mat |
sampleIdx, |
|
|
Mat |
sampleWeights |
|
) |
| |
|
static |
Creates training data from in-memory arrays.
- Parameters
-
samples | matrix of samples. It should have CV_32F type. |
layout | see ml::SampleTypes. |
responses | matrix of responses. If the responses are scalar, they should be stored as a single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former case the responses are considered as ordered by default; in the latter case - as categorical) |
varIdx | vector specifying which variables to use for training. It can be an integer vector (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active variables. |
sampleIdx | vector specifying which samples to use for training. It can be an integer vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training samples. |
sampleWeights | optional vector with weights for each sample. It should have CV_32F type. |
varType | optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses> , containing types of each input and output variable. See ml::VariableTypes. |
◆ create() [3/5]
static TrainData OpenCVForUnity.MlModule.TrainData.create |
( |
Mat |
samples, |
|
|
int |
layout, |
|
|
Mat |
responses, |
|
|
Mat |
varIdx, |
|
|
Mat |
sampleIdx |
|
) |
| |
|
static |
Creates training data from in-memory arrays.
- Parameters
-
samples | matrix of samples. It should have CV_32F type. |
layout | see ml::SampleTypes. |
responses | matrix of responses. If the responses are scalar, they should be stored as a single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former case the responses are considered as ordered by default; in the latter case - as categorical) |
varIdx | vector specifying which variables to use for training. It can be an integer vector (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active variables. |
sampleIdx | vector specifying which samples to use for training. It can be an integer vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training samples. |
sampleWeights | optional vector with weights for each sample. It should have CV_32F type. |
varType | optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses> , containing types of each input and output variable. See ml::VariableTypes. |
◆ create() [4/5]
static TrainData OpenCVForUnity.MlModule.TrainData.create |
( |
Mat |
samples, |
|
|
int |
layout, |
|
|
Mat |
responses, |
|
|
Mat |
varIdx |
|
) |
| |
|
static |
Creates training data from in-memory arrays.
- Parameters
-
samples | matrix of samples. It should have CV_32F type. |
layout | see ml::SampleTypes. |
responses | matrix of responses. If the responses are scalar, they should be stored as a single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former case the responses are considered as ordered by default; in the latter case - as categorical) |
varIdx | vector specifying which variables to use for training. It can be an integer vector (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active variables. |
sampleIdx | vector specifying which samples to use for training. It can be an integer vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training samples. |
sampleWeights | optional vector with weights for each sample. It should have CV_32F type. |
varType | optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses> , containing types of each input and output variable. See ml::VariableTypes. |
◆ create() [5/5]
static TrainData OpenCVForUnity.MlModule.TrainData.create |
( |
Mat |
samples, |
|
|
int |
layout, |
|
|
Mat |
responses |
|
) |
| |
|
static |
Creates training data from in-memory arrays.
- Parameters
-
samples | matrix of samples. It should have CV_32F type. |
layout | see ml::SampleTypes. |
responses | matrix of responses. If the responses are scalar, they should be stored as a single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former case the responses are considered as ordered by default; in the latter case - as categorical) |
varIdx | vector specifying which variables to use for training. It can be an integer vector (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active variables. |
sampleIdx | vector specifying which samples to use for training. It can be an integer vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training samples. |
sampleWeights | optional vector with weights for each sample. It should have CV_32F type. |
varType | optional vector of type CV_8U and size <number_of_variables_in_samples> + <number_of_variables_in_responses> , containing types of each input and output variable. See ml::VariableTypes. |
◆ Dispose()
override void OpenCVForUnity.MlModule.TrainData.Dispose |
( |
bool |
disposing | ) |
|
|
protectedvirtual |
◆ getCatCount()
int OpenCVForUnity.MlModule.TrainData.getCatCount |
( |
int |
vi | ) |
|
◆ getCatMap()
Mat OpenCVForUnity.MlModule.TrainData.getCatMap |
( |
| ) |
|
◆ getCatOfs()
Mat OpenCVForUnity.MlModule.TrainData.getCatOfs |
( |
| ) |
|
◆ getClassLabels()
Mat OpenCVForUnity.MlModule.TrainData.getClassLabels |
( |
| ) |
|
Returns the vector of class labels.
The function returns vector of unique labels occurred in the responses.
◆ getDefaultSubstValues()
Mat OpenCVForUnity.MlModule.TrainData.getDefaultSubstValues |
( |
| ) |
|
◆ getLayout()
int OpenCVForUnity.MlModule.TrainData.getLayout |
( |
| ) |
|
◆ getMissing()
Mat OpenCVForUnity.MlModule.TrainData.getMissing |
( |
| ) |
|
◆ getNAllVars()
int OpenCVForUnity.MlModule.TrainData.getNAllVars |
( |
| ) |
|
◆ getNames()
void OpenCVForUnity.MlModule.TrainData.getNames |
( |
List< string > |
names | ) |
|
Returns vector of symbolic names captured in loadFromCSV()
◆ getNativeObjAddr()
IntPtr OpenCVForUnity.MlModule.TrainData.getNativeObjAddr |
( |
| ) |
|
◆ getNormCatResponses()
Mat OpenCVForUnity.MlModule.TrainData.getNormCatResponses |
( |
| ) |
|
◆ getNSamples()
int OpenCVForUnity.MlModule.TrainData.getNSamples |
( |
| ) |
|
◆ getNTestSamples()
int OpenCVForUnity.MlModule.TrainData.getNTestSamples |
( |
| ) |
|
◆ getNTrainSamples()
int OpenCVForUnity.MlModule.TrainData.getNTrainSamples |
( |
| ) |
|
◆ getNVars()
int OpenCVForUnity.MlModule.TrainData.getNVars |
( |
| ) |
|
◆ getResponses()
Mat OpenCVForUnity.MlModule.TrainData.getResponses |
( |
| ) |
|
◆ getResponseType()
int OpenCVForUnity.MlModule.TrainData.getResponseType |
( |
| ) |
|
◆ getSample()
void OpenCVForUnity.MlModule.TrainData.getSample |
( |
Mat |
varIdx, |
|
|
int |
sidx, |
|
|
float |
buf |
|
) |
| |
◆ getSamples()
Mat OpenCVForUnity.MlModule.TrainData.getSamples |
( |
| ) |
|
◆ getSampleWeights()
Mat OpenCVForUnity.MlModule.TrainData.getSampleWeights |
( |
| ) |
|
◆ getSubMatrix()
static Mat OpenCVForUnity.MlModule.TrainData.getSubMatrix |
( |
Mat |
matrix, |
|
|
Mat |
idx, |
|
|
int |
layout |
|
) |
| |
|
static |
Extract from matrix rows/cols specified by passed indexes.
- Parameters
-
matrix | input matrix (supported types: CV_32S, CV_32F, CV_64F) |
idx | 1D index vector |
layout | specifies to extract rows (cv::ml::ROW_SAMPLES) or to extract columns (cv::ml::COL_SAMPLES) |
◆ getSubVector()
static Mat OpenCVForUnity.MlModule.TrainData.getSubVector |
( |
Mat |
vec, |
|
|
Mat |
idx |
|
) |
| |
|
static |
Extract from 1D vector elements specified by passed indexes.
- Parameters
-
vec | input vector (supported types: CV_32S, CV_32F, CV_64F) |
idx | 1D index vector |
◆ getTestNormCatResponses()
Mat OpenCVForUnity.MlModule.TrainData.getTestNormCatResponses |
( |
| ) |
|
◆ getTestResponses()
Mat OpenCVForUnity.MlModule.TrainData.getTestResponses |
( |
| ) |
|
◆ getTestSampleIdx()
Mat OpenCVForUnity.MlModule.TrainData.getTestSampleIdx |
( |
| ) |
|
◆ getTestSamples()
Mat OpenCVForUnity.MlModule.TrainData.getTestSamples |
( |
| ) |
|
Returns matrix of test samples.
◆ getTestSampleWeights()
Mat OpenCVForUnity.MlModule.TrainData.getTestSampleWeights |
( |
| ) |
|
◆ getTrainNormCatResponses()
Mat OpenCVForUnity.MlModule.TrainData.getTrainNormCatResponses |
( |
| ) |
|
Returns the vector of normalized categorical responses.
The function returns vector of responses. Each response is integer from 0
to <number of classes>-1
. The actual label value can be retrieved then from the class label vector, see TrainData::getClassLabels.
◆ getTrainResponses()
Mat OpenCVForUnity.MlModule.TrainData.getTrainResponses |
( |
| ) |
|
Returns the vector of responses.
The function returns ordered or the original categorical responses. Usually it's used in regression algorithms.
◆ getTrainSampleIdx()
Mat OpenCVForUnity.MlModule.TrainData.getTrainSampleIdx |
( |
| ) |
|
◆ getTrainSamples() [1/4]
Mat OpenCVForUnity.MlModule.TrainData.getTrainSamples |
( |
int |
layout, |
|
|
bool |
compressSamples, |
|
|
bool |
compressVars |
|
) |
| |
Returns matrix of train samples.
- Parameters
-
layout | The requested layout. If it's different from the initial one, the matrix is transposed. See ml::SampleTypes. |
compressSamples | if true, the function returns only the training samples (specified by sampleIdx) |
compressVars | if true, the function returns the shorter training samples, containing only the active variables. |
In current implementation the function tries to avoid physical data copying and returns the matrix stored inside TrainData (unless the transposition or compression is needed).
◆ getTrainSamples() [2/4]
Mat OpenCVForUnity.MlModule.TrainData.getTrainSamples |
( |
int |
layout, |
|
|
bool |
compressSamples |
|
) |
| |
Returns matrix of train samples.
- Parameters
-
layout | The requested layout. If it's different from the initial one, the matrix is transposed. See ml::SampleTypes. |
compressSamples | if true, the function returns only the training samples (specified by sampleIdx) |
compressVars | if true, the function returns the shorter training samples, containing only the active variables. |
In current implementation the function tries to avoid physical data copying and returns the matrix stored inside TrainData (unless the transposition or compression is needed).
◆ getTrainSamples() [3/4]
Mat OpenCVForUnity.MlModule.TrainData.getTrainSamples |
( |
int |
layout | ) |
|
Returns matrix of train samples.
- Parameters
-
layout | The requested layout. If it's different from the initial one, the matrix is transposed. See ml::SampleTypes. |
compressSamples | if true, the function returns only the training samples (specified by sampleIdx) |
compressVars | if true, the function returns the shorter training samples, containing only the active variables. |
In current implementation the function tries to avoid physical data copying and returns the matrix stored inside TrainData (unless the transposition or compression is needed).
◆ getTrainSamples() [4/4]
Mat OpenCVForUnity.MlModule.TrainData.getTrainSamples |
( |
| ) |
|
Returns matrix of train samples.
- Parameters
-
layout | The requested layout. If it's different from the initial one, the matrix is transposed. See ml::SampleTypes. |
compressSamples | if true, the function returns only the training samples (specified by sampleIdx) |
compressVars | if true, the function returns the shorter training samples, containing only the active variables. |
In current implementation the function tries to avoid physical data copying and returns the matrix stored inside TrainData (unless the transposition or compression is needed).
◆ getTrainSampleWeights()
Mat OpenCVForUnity.MlModule.TrainData.getTrainSampleWeights |
( |
| ) |
|
◆ getValues()
void OpenCVForUnity.MlModule.TrainData.getValues |
( |
int |
vi, |
|
|
Mat |
sidx, |
|
|
float |
values |
|
) |
| |
◆ getVarIdx()
Mat OpenCVForUnity.MlModule.TrainData.getVarIdx |
( |
| ) |
|
◆ getVarSymbolFlags()
Mat OpenCVForUnity.MlModule.TrainData.getVarSymbolFlags |
( |
| ) |
|
◆ getVarType()
Mat OpenCVForUnity.MlModule.TrainData.getVarType |
( |
| ) |
|
◆ setTrainTestSplit() [1/2]
void OpenCVForUnity.MlModule.TrainData.setTrainTestSplit |
( |
int |
count, |
|
|
bool |
shuffle |
|
) |
| |
◆ setTrainTestSplit() [2/2]
void OpenCVForUnity.MlModule.TrainData.setTrainTestSplit |
( |
int |
count | ) |
|
◆ setTrainTestSplitRatio() [1/2]
void OpenCVForUnity.MlModule.TrainData.setTrainTestSplitRatio |
( |
double |
ratio, |
|
|
bool |
shuffle |
|
) |
| |
Splits the training data into the training and test parts.
The function selects a subset of specified relative size and then returns it as the training set. If the function is not called, all the data is used for training. Please, note that for each of TrainData::getTrain* there is corresponding TrainData::getTest*, so that the test subset can be retrieved and processed as well.
- See also
- TrainData::setTrainTestSplit
◆ setTrainTestSplitRatio() [2/2]
void OpenCVForUnity.MlModule.TrainData.setTrainTestSplitRatio |
( |
double |
ratio | ) |
|
Splits the training data into the training and test parts.
The function selects a subset of specified relative size and then returns it as the training set. If the function is not called, all the data is used for training. Please, note that for each of TrainData::getTrain* there is corresponding TrainData::getTest*, so that the test subset can be retrieved and processed as well.
- See also
- TrainData::setTrainTestSplit
◆ shuffleTrainTest()
void OpenCVForUnity.MlModule.TrainData.shuffleTrainTest |
( |
| ) |
|
The documentation for this class was generated from the following file:
- OpenCVForUnity/Assets/OpenCVForUnity/org/opencv/ml/TrainData.cs