OpenCV for Unity 2.6.4
Enox Software / Please refer to OpenCV official document ( http://docs.opencv.org/4.10.0/index.html ) for the details of the argument of the method.
Loading...
Searching...
No Matches
OpenCVForUnity.DnnModule.ClassificationModel Class Reference

This class represents high-level API for classification models. More...

Public Member Functions

 ClassificationModel (Net network)
 Create model from deep learning network.
 
 ClassificationModel (string model)
 Create classification model from network represented in one of the supported formats. An order of model and config arguments does not matter.
 
 ClassificationModel (string model, string config)
 Create classification model from network represented in one of the supported formats. An order of model and config arguments does not matter.
 
void classify (Mat frame, int[] classId, float[] conf)
 
bool getEnableSoftmaxPostProcessing ()
 Get enable/disable softmax post processing option.
 
ClassificationModel setEnableSoftmaxPostProcessing (bool enable)
 Set enable/disable softmax post processing option.
 
- Public Member Functions inherited from OpenCVForUnity.DnnModule.Model
 Model (Net network)
 Create model from deep learning network.
 
 Model (string model)
 Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter.
 
 Model (string model, string config)
 Create model from deep learning network represented in one of the supported formats. An order of model and config arguments does not matter.
 
Model enableWinograd (bool useWinograd)
 
IntPtr getNativeObjAddr ()
 
void predict (Mat frame, List< Mat > outs)
 Given the input frame, create input blob, run net and return the output blobs.
 
Model setInputCrop (bool crop)
 Set flag crop for frame.
 
Model setInputMean (in Vec4d mean)
 Set mean value for frame.
 
Model setInputMean (in(double v0, double v1, double v2, double v3) mean)
 Set mean value for frame.
 
Model setInputMean (Scalar mean)
 Set mean value for frame.
 
void setInputParams ()
 Set preprocessing parameters for frame.
 
void setInputParams (double scale)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in Vec2d size)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in Vec2d size, in Vec4d mean)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in Vec2d size, in Vec4d mean, bool swapRB)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in Vec2d size, in Vec4d mean, bool swapRB, bool crop)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in(double width, double height) size)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in(double width, double height) size, in(double v0, double v1, double v2, double v3) mean)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in(double width, double height) size, in(double v0, double v1, double v2, double v3) mean, bool swapRB)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, in(double width, double height) size, in(double v0, double v1, double v2, double v3) mean, bool swapRB, bool crop)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, Size size)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, Size size, Scalar mean)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, Size size, Scalar mean, bool swapRB)
 Set preprocessing parameters for frame.
 
void setInputParams (double scale, Size size, Scalar mean, bool swapRB, bool crop)
 Set preprocessing parameters for frame.
 
Model setInputScale (in Vec4d scale)
 Set scalefactor value for frame.
 
Model setInputScale (in(double v0, double v1, double v2, double v3) scale)
 Set scalefactor value for frame.
 
Model setInputScale (Scalar scale)
 Set scalefactor value for frame.
 
Model setInputSize (in Vec2d size)
 Set input size for frame.
 
Model setInputSize (in(double width, double height) size)
 Set input size for frame.
 
Model setInputSize (int width, int height)
 
Model setInputSize (Size size)
 Set input size for frame.
 
Model setInputSwapRB (bool swapRB)
 Set flag swapRB for frame.
 
Model setOutputNames (List< string > outNames)
 Set output names for frame.
 
Model setPreferableBackend (int backendId)
 
Model setPreferableTarget (int targetId)
 
- Public Member Functions inherited from OpenCVForUnity.DisposableObject
void Dispose ()
 
void ThrowIfDisposed ()
 

Static Public Member Functions

static new ClassificationModel __fromPtr__ (IntPtr addr)
 
- Static Public Member Functions inherited from OpenCVForUnity.DnnModule.Model
static Model __fromPtr__ (IntPtr addr)
 
- Static Public Member Functions inherited from OpenCVForUnity.DisposableObject
static IntPtr ThrowIfNullIntPtr (IntPtr ptr)
 

Protected Member Functions

override void Dispose (bool disposing)
 
- Protected Member Functions inherited from OpenCVForUnity.DnnModule.Model
override void Dispose (bool disposing)
 
- Protected Member Functions inherited from OpenCVForUnity.DisposableOpenCVObject
 DisposableOpenCVObject ()
 
 DisposableOpenCVObject (bool isEnabledDispose)
 
 DisposableOpenCVObject (IntPtr ptr)
 
 DisposableOpenCVObject (IntPtr ptr, bool isEnabledDispose)
 
- Protected Member Functions inherited from OpenCVForUnity.DisposableObject
 DisposableObject ()
 
 DisposableObject (bool isEnabledDispose)
 

Additional Inherited Members

- Package Functions inherited from OpenCVForUnity.DnnModule.Model
- Package Attributes inherited from OpenCVForUnity.DisposableOpenCVObject
- Properties inherited from OpenCVForUnity.DisposableObject
bool IsDisposed [get, protected set]
 
bool IsEnabledDispose [get, set]
 

Detailed Description

This class represents high-level API for classification models.

ClassificationModel allows to set params for preprocessing input image. ClassificationModel creates net from file with trained weights and config, sets preprocessing input, runs forward pass and return top-1 prediction.

Constructor & Destructor Documentation

◆ ClassificationModel() [1/3]

OpenCVForUnity.DnnModule.ClassificationModel.ClassificationModel ( string model,
string config )

Create classification model from network represented in one of the supported formats. An order of model and config arguments does not matter.

◆ ClassificationModel() [2/3]

OpenCVForUnity.DnnModule.ClassificationModel.ClassificationModel ( string model)

Create classification model from network represented in one of the supported formats. An order of model and config arguments does not matter.

◆ ClassificationModel() [3/3]

OpenCVForUnity.DnnModule.ClassificationModel.ClassificationModel ( Net network)

Create model from deep learning network.

Member Function Documentation

◆ __fromPtr__()

static new ClassificationModel OpenCVForUnity.DnnModule.ClassificationModel.__fromPtr__ ( IntPtr addr)
static

◆ classify()

void OpenCVForUnity.DnnModule.ClassificationModel.classify ( Mat frame,
int[] classId,
float[] conf )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ Dispose()

override void OpenCVForUnity.DnnModule.ClassificationModel.Dispose ( bool disposing)
protectedvirtual

Reimplemented from OpenCVForUnity.DisposableObject.

◆ getEnableSoftmaxPostProcessing()

bool OpenCVForUnity.DnnModule.ClassificationModel.getEnableSoftmaxPostProcessing ( )

Get enable/disable softmax post processing option.

This option defaults to false, softmax post processing is not applied within the classify() function.

◆ setEnableSoftmaxPostProcessing()

ClassificationModel OpenCVForUnity.DnnModule.ClassificationModel.setEnableSoftmaxPostProcessing ( bool enable)

Set enable/disable softmax post processing option.

If this option is true, softmax is applied after forward inference within the classify() function to convert the confidences range to [0.0-1.0]. This function allows you to toggle this behavior. Please turn true when not contain softmax layer in model.


The documentation for this class was generated from the following file: