OpenCV for Unity 2.6.5
Enox Software / Please refer to OpenCV official document ( http://docs.opencv.org/4.10.0/index.html ) for the details of the argument of the method.
Loading...
Searching...
No Matches
OpenCVForUnity.ObjdetectModule.HOGDescriptor Class Reference

Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector. More...

Public Member Functions

 HOGDescriptor ()
 Creates the HOG descriptor and detector with default parameters.
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture, double _winSigma)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection, int _nlevels)
 
 HOGDescriptor (in Vec2d _winSize, in Vec2d _blockSize, in Vec2d _blockStride, in Vec2d _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection, int _nlevels, bool _signedGradient)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture, double _winSigma)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection, int _nlevels)
 
 HOGDescriptor (in(double width, double height) _winSize, in(double width, double height) _blockSize, in(double width, double height) _blockStride, in(double width, double height) _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection, int _nlevels, bool _signedGradient)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection, int _nlevels)
 
 HOGDescriptor (Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture, double _winSigma, int _histogramNormType, double _L2HysThreshold, bool _gammaCorrection, int _nlevels, bool _signedGradient)
 
 HOGDescriptor (string filename)
 
bool checkDetectorSize ()
 Checks if detector size equal to descriptor size.
 
void compute (Mat img, MatOfFloat descriptors)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, in Vec2d winStride)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, in Vec2d winStride, in Vec2d padding)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, in Vec2d winStride, in Vec2d padding, MatOfPoint locations)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, in(double width, double height) winStride)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, in(double width, double height) winStride, in(double width, double height) padding)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, in(double width, double height) winStride, in(double width, double height) padding, MatOfPoint locations)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, Size winStride)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, Size winStride, Size padding)
 Computes HOG descriptors of given image.
 
void compute (Mat img, MatOfFloat descriptors, Size winStride, Size padding, MatOfPoint locations)
 Computes HOG descriptors of given image.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs)
 Computes gradients and quantized gradient orientations.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs, in Vec2d paddingTL)
 Computes gradients and quantized gradient orientations.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs, in Vec2d paddingTL, in Vec2d paddingBR)
 Computes gradients and quantized gradient orientations.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs, in(double width, double height) paddingTL)
 Computes gradients and quantized gradient orientations.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs, in(double width, double height) paddingTL, in(double width, double height) paddingBR)
 Computes gradients and quantized gradient orientations.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs, Size paddingTL)
 Computes gradients and quantized gradient orientations.
 
void computeGradient (Mat img, Mat grad, Mat angleOfs, Size paddingTL, Size paddingBR)
 Computes gradients and quantized gradient orientations.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, in Vec2d winStride)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, in Vec2d winStride, in Vec2d padding)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, in Vec2d winStride, in Vec2d padding, MatOfPoint searchLocations)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, in(double width, double height) winStride)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, in(double width, double height) winStride, in(double width, double height) padding)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, in(double width, double height) winStride, in(double width, double height) padding, MatOfPoint searchLocations)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride, Size padding)
 Performs object detection without a multi-scale window.
 
void detect (Mat img, MatOfPoint foundLocations, MatOfDouble weights, double hitThreshold, Size winStride, Size padding, MatOfPoint searchLocations)
 Performs object detection without a multi-scale window.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in Vec2d winStride)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in Vec2d winStride, in Vec2d padding)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in Vec2d winStride, in Vec2d padding, double scale)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in Vec2d winStride, in Vec2d padding, double scale, double groupThreshold)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in Vec2d winStride, in Vec2d padding, double scale, double groupThreshold, bool useMeanshiftGrouping)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in(double width, double height) winStride)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in(double width, double height) winStride, in(double width, double height) padding)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in(double width, double height) winStride, in(double width, double height) padding, double scale)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in(double width, double height) winStride, in(double width, double height) padding, double scale, double groupThreshold)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, in(double width, double height) winStride, in(double width, double height) padding, double scale, double groupThreshold, bool useMeanshiftGrouping)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale, double groupThreshold)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
void detectMultiScale (Mat img, MatOfRect foundLocations, MatOfDouble foundWeights, double hitThreshold, Size winStride, Size padding, double scale, double groupThreshold, bool useMeanshiftGrouping)
 Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.
 
Size get_blockSize ()
 
double double height get_blockSizeAsValueTuple ()
 
Vec2d get_blockSizeAsVec2d ()
 
Size get_blockStride ()
 
double double height get_blockStrideAsValueTuple ()
 
Vec2d get_blockStrideAsVec2d ()
 
Size get_cellSize ()
 
double double height get_cellSizeAsValueTuple ()
 
Vec2d get_cellSizeAsVec2d ()
 
int get_derivAperture ()
 
bool get_gammaCorrection ()
 
int get_histogramNormType ()
 
double get_L2HysThreshold ()
 
int get_nbins ()
 
int get_nlevels ()
 
bool get_signedGradient ()
 
MatOfFloat get_svmDetector ()
 
double get_winSigma ()
 
Size get_winSize ()
 
double double height get_winSizeAsValueTuple ()
 
Vec2d get_winSizeAsVec2d ()
 
long getDescriptorSize ()
 Returns the number of coefficients required for the classification.
 
IntPtr getNativeObjAddr ()
 
double getWinSigma ()
 Returns winSigma value.
 
bool load (string filename)
 loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
 
bool load (string filename, string objname)
 loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
 
void save (string filename)
 saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
 
void save (string filename, string objname)
 saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
 
void setSVMDetector (Mat svmdetector)
 Sets coefficients for the linear SVM classifier.
 
- Public Member Functions inherited from OpenCVForUnity.DisposableObject
void Dispose ()
 
void ThrowIfDisposed ()
 

Static Public Member Functions

static HOGDescriptor __fromPtr__ (IntPtr addr)
 
static MatOfFloat getDaimlerPeopleDetector ()
 Returns coefficients of the classifier trained for people detection (for 48x96 windows).
 
static MatOfFloat getDefaultPeopleDetector ()
 Returns coefficients of the classifier trained for people detection (for 64x128 windows).
 
- Static Public Member Functions inherited from OpenCVForUnity.DisposableObject
static IntPtr ThrowIfNullIntPtr (IntPtr ptr)
 

Public Attributes

double width
 

Static Public Attributes

const int DEFAULT_NLEVELS = 64
 
const int DESCR_FORMAT_COL_BY_COL = 0
 
const int DESCR_FORMAT_ROW_BY_ROW = 1
 
const int L2Hys = 0
 

Protected Member Functions

override void Dispose (bool disposing)
 
- Protected Member Functions inherited from OpenCVForUnity.DisposableOpenCVObject
 DisposableOpenCVObject ()
 
 DisposableOpenCVObject (bool isEnabledDispose)
 
 DisposableOpenCVObject (IntPtr ptr)
 
 DisposableOpenCVObject (IntPtr ptr, bool isEnabledDispose)
 
- Protected Member Functions inherited from OpenCVForUnity.DisposableObject
 DisposableObject ()
 
 DisposableObject (bool isEnabledDispose)
 

Additional Inherited Members

- Package Attributes inherited from OpenCVForUnity.DisposableOpenCVObject
- Properties inherited from OpenCVForUnity.DisposableObject
bool IsDisposed [get, protected set]
 
bool IsEnabledDispose [get, set]
 

Detailed Description

Constructor & Destructor Documentation

◆ HOGDescriptor() [1/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( )

Creates the HOG descriptor and detector with default parameters.

aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )

◆ HOGDescriptor() [2/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection,
int _nlevels,
bool _signedGradient )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [3/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection,
int _nlevels )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [4/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [5/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [6/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [7/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture,
double _winSigma )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [8/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins,
int _derivAperture )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [9/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( Size _winSize,
Size _blockSize,
Size _blockStride,
Size _cellSize,
int _nbins )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [10/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( string filename)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Creates the HOG descriptor and detector and loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
Parameters
filenameThe file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.

◆ HOGDescriptor() [11/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection,
int _nlevels,
bool _signedGradient )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [12/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection,
int _nlevels )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [13/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [14/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [15/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [16/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture,
double _winSigma )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [17/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins,
int _derivAperture )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [18/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in Vec2d _winSize,
in Vec2d _blockSize,
in Vec2d _blockStride,
in Vec2d _cellSize,
int _nbins )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [19/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection,
int _nlevels,
bool _signedGradient )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [20/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection,
int _nlevels )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [21/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold,
bool _gammaCorrection )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [22/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType,
double _L2HysThreshold )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [23/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture,
double _winSigma,
int _histogramNormType )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [24/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture,
double _winSigma )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [25/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins,
int _derivAperture )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

◆ HOGDescriptor() [26/26]

OpenCVForUnity.ObjdetectModule.HOGDescriptor.HOGDescriptor ( in(double width, double height) _winSize,
in(double width, double height) _blockSize,
in(double width, double height) _blockStride,
in(double width, double height) _cellSize,
int _nbins )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
_winSizesets winSize with given value.
_blockSizesets blockSize with given value.
_blockStridesets blockStride with given value.
_cellSizesets cellSize with given value.
_nbinssets nbins with given value.
_derivAperturesets derivAperture with given value.
_winSigmasets winSigma with given value.
_histogramNormTypesets histogramNormType with given value.
_L2HysThresholdsets L2HysThreshold with given value.
_gammaCorrectionsets gammaCorrection with given value.
_nlevelssets nlevels with given value.
_signedGradientsets signedGradient with given value.

Member Function Documentation

◆ __fromPtr__()

static HOGDescriptor OpenCVForUnity.ObjdetectModule.HOGDescriptor.__fromPtr__ ( IntPtr addr)
static

◆ checkDetectorSize()

bool OpenCVForUnity.ObjdetectModule.HOGDescriptor.checkDetectorSize ( )

Checks if detector size equal to descriptor size.

◆ compute() [1/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [2/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
in Vec2d winStride )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [3/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
in Vec2d winStride,
in Vec2d padding )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [4/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
in Vec2d winStride,
in Vec2d padding,
MatOfPoint locations )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [5/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
in(double width, double height) winStride )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [6/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
in(double width, double height) winStride,
in(double width, double height) padding )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [7/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
in(double width, double height) winStride,
in(double width, double height) padding,
MatOfPoint locations )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [8/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
Size winStride )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [9/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
Size winStride,
Size padding )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ compute() [10/10]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.compute ( Mat img,
MatOfFloat descriptors,
Size winStride,
Size padding,
MatOfPoint locations )

Computes HOG descriptors of given image.

Parameters
imgMatrix of the type CV_8U containing an image where HOG features will be calculated.
descriptorsMatrix of the type CV_32F
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
locationsVector of Point

◆ computeGradient() [1/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ computeGradient() [2/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs,
in Vec2d paddingTL )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ computeGradient() [3/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs,
in Vec2d paddingTL,
in Vec2d paddingBR )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ computeGradient() [4/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs,
in(double width, double height) paddingTL )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ computeGradient() [5/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs,
in(double width, double height) paddingTL,
in(double width, double height) paddingBR )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ computeGradient() [6/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs,
Size paddingTL )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ computeGradient() [7/7]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.computeGradient ( Mat img,
Mat grad,
Mat angleOfs,
Size paddingTL,
Size paddingBR )

Computes gradients and quantized gradient orientations.

Parameters
imgMatrix contains the image to be computed
gradMatrix of type CV_32FC2 contains computed gradients
angleOfsMatrix of type CV_8UC2 contains quantized gradient orientations
paddingTLPadding from top-left
paddingBRPadding from bottom-right

◆ detect() [1/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [2/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [3/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
in Vec2d winStride )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [4/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
in Vec2d winStride,
in Vec2d padding )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [5/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
in Vec2d winStride,
in Vec2d padding,
MatOfPoint searchLocations )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [6/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
in(double width, double height) winStride )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [7/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
in(double width, double height) winStride,
in(double width, double height) padding )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [8/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
in(double width, double height) winStride,
in(double width, double height) padding,
MatOfPoint searchLocations )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [9/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
Size winStride )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [10/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
Size winStride,
Size padding )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detect() [11/11]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detect ( Mat img,
MatOfPoint foundLocations,
MatOfDouble weights,
double hitThreshold,
Size winStride,
Size padding,
MatOfPoint searchLocations )

Performs object detection without a multi-scale window.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of point where each point contains left-top corner point of detected object boundaries.
weightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
searchLocationsVector of Point includes set of requested locations to be evaluated.

◆ detectMultiScale() [1/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [2/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [3/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in Vec2d winStride )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [4/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in Vec2d winStride,
in Vec2d padding )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [5/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in Vec2d winStride,
in Vec2d padding,
double scale )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [6/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in Vec2d winStride,
in Vec2d padding,
double scale,
double groupThreshold )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [7/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in Vec2d winStride,
in Vec2d padding,
double scale,
double groupThreshold,
bool useMeanshiftGrouping )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [8/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in(double width, double height) winStride )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [9/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in(double width, double height) winStride,
in(double width, double height) padding )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [10/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in(double width, double height) winStride,
in(double width, double height) padding,
double scale )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [11/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in(double width, double height) winStride,
in(double width, double height) padding,
double scale,
double groupThreshold )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [12/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
in(double width, double height) winStride,
in(double width, double height) padding,
double scale,
double groupThreshold,
bool useMeanshiftGrouping )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [13/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
Size winStride )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [14/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
Size winStride,
Size padding )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [15/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [16/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double groupThreshold )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ detectMultiScale() [17/17]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.detectMultiScale ( Mat img,
MatOfRect foundLocations,
MatOfDouble foundWeights,
double hitThreshold,
Size winStride,
Size padding,
double scale,
double groupThreshold,
bool useMeanshiftGrouping )

Detects objects of different sizes in the input image. The detected objects are returned as a list of rectangles.

Parameters
imgMatrix of the type CV_8U or CV_8UC3 containing an image where objects are detected.
foundLocationsVector of rectangles where each rectangle contains the detected object.
foundWeightsVector that will contain confidence values for each detected object.
hitThresholdThreshold for the distance between features and SVM classifying plane. Usually it is 0 and should be specified in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
winStrideWindow stride. It must be a multiple of block stride.
paddingPadding
scaleCoefficient of the detection window increase.
groupThresholdCoefficient to regulate the similarity threshold. When detected, some objects can be covered by many rectangles. 0 means not to perform grouping.
useMeanshiftGroupingindicates grouping algorithm

◆ Dispose()

override void OpenCVForUnity.ObjdetectModule.HOGDescriptor.Dispose ( bool disposing)
protectedvirtual

◆ get_blockSize()

Size OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_blockSize ( )

◆ get_blockSizeAsValueTuple()

double double height OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_blockSizeAsValueTuple ( )

◆ get_blockSizeAsVec2d()

Vec2d OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_blockSizeAsVec2d ( )

◆ get_blockStride()

Size OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_blockStride ( )

◆ get_blockStrideAsValueTuple()

double double height OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_blockStrideAsValueTuple ( )

◆ get_blockStrideAsVec2d()

Vec2d OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_blockStrideAsVec2d ( )

◆ get_cellSize()

Size OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_cellSize ( )

◆ get_cellSizeAsValueTuple()

double double height OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_cellSizeAsValueTuple ( )

◆ get_cellSizeAsVec2d()

Vec2d OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_cellSizeAsVec2d ( )

◆ get_derivAperture()

int OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_derivAperture ( )

◆ get_gammaCorrection()

bool OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_gammaCorrection ( )

◆ get_histogramNormType()

int OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_histogramNormType ( )

◆ get_L2HysThreshold()

double OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_L2HysThreshold ( )

◆ get_nbins()

int OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_nbins ( )

◆ get_nlevels()

int OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_nlevels ( )

◆ get_signedGradient()

bool OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_signedGradient ( )

◆ get_svmDetector()

MatOfFloat OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_svmDetector ( )

◆ get_winSigma()

double OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_winSigma ( )

◆ get_winSize()

Size OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_winSize ( )

◆ get_winSizeAsValueTuple()

double double height OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_winSizeAsValueTuple ( )

◆ get_winSizeAsVec2d()

Vec2d OpenCVForUnity.ObjdetectModule.HOGDescriptor.get_winSizeAsVec2d ( )

◆ getDaimlerPeopleDetector()

static MatOfFloat OpenCVForUnity.ObjdetectModule.HOGDescriptor.getDaimlerPeopleDetector ( )
static

Returns coefficients of the classifier trained for people detection (for 48x96 windows).

◆ getDefaultPeopleDetector()

static MatOfFloat OpenCVForUnity.ObjdetectModule.HOGDescriptor.getDefaultPeopleDetector ( )
static

Returns coefficients of the classifier trained for people detection (for 64x128 windows).

◆ getDescriptorSize()

long OpenCVForUnity.ObjdetectModule.HOGDescriptor.getDescriptorSize ( )

Returns the number of coefficients required for the classification.

◆ getNativeObjAddr()

IntPtr OpenCVForUnity.ObjdetectModule.HOGDescriptor.getNativeObjAddr ( )

◆ getWinSigma()

double OpenCVForUnity.ObjdetectModule.HOGDescriptor.getWinSigma ( )

Returns winSigma value.

◆ load() [1/2]

bool OpenCVForUnity.ObjdetectModule.HOGDescriptor.load ( string filename)

loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file

Parameters
filenameName of the file to read.
objnameThe optional name of the node to read (if empty, the first top-level node will be used).

◆ load() [2/2]

bool OpenCVForUnity.ObjdetectModule.HOGDescriptor.load ( string filename,
string objname )

loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file

Parameters
filenameName of the file to read.
objnameThe optional name of the node to read (if empty, the first top-level node will be used).

◆ save() [1/2]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.save ( string filename)

saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file

Parameters
filenameFile name
objnameObject name

◆ save() [2/2]

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.save ( string filename,
string objname )

saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file

Parameters
filenameFile name
objnameObject name

◆ setSVMDetector()

void OpenCVForUnity.ObjdetectModule.HOGDescriptor.setSVMDetector ( Mat svmdetector)

Sets coefficients for the linear SVM classifier.

Parameters
svmdetectorcoefficients for the linear SVM classifier.

Member Data Documentation

◆ DEFAULT_NLEVELS

const int OpenCVForUnity.ObjdetectModule.HOGDescriptor.DEFAULT_NLEVELS = 64
static

◆ DESCR_FORMAT_COL_BY_COL

const int OpenCVForUnity.ObjdetectModule.HOGDescriptor.DESCR_FORMAT_COL_BY_COL = 0
static

◆ DESCR_FORMAT_ROW_BY_ROW

const int OpenCVForUnity.ObjdetectModule.HOGDescriptor.DESCR_FORMAT_ROW_BY_ROW = 1
static

◆ L2Hys

const int OpenCVForUnity.ObjdetectModule.HOGDescriptor.L2Hys = 0
static

◆ width

double OpenCVForUnity.ObjdetectModule.HOGDescriptor.width

The documentation for this class was generated from the following files: